• 제목/요약/키워드: Stiffened panels

검색결과 102건 처리시간 0.025초

보강판의 균열거동해석과 Crack Arrest 설계(II) - Crack Arrest 거동의 시뮬레이션 (Crack Growth Analysis and Crack Arrest Design of Stiffened Panels(II) - Numerical Simulation of Crack Arrest Behavior)

  • 이의종;이환우
    • 한국기계가공학회지
    • /
    • 제4권2호
    • /
    • pp.50-56
    • /
    • 2005
  • To demonstrate the feasibility of utilizing FCAD chart proposed in our previous work, series of crack growth/arrest behavior in the integrally stiffened panels were simulated by numerical method using upper mentioned FCAD charts and a new crack growth rate equation. It is concluded that proposed family of FCAD curves, in the form of non-dimensional arrest load ranges, are reliable indicators of fatigue crack growth/arrest behavior of integrally stiffened panels considered here.

  • PDF

접착 패칭된 박-후판 결합형 보강판의 피로균열성장 거동 (Fatigue Crack Growth Behavior of the Thin-to-Thick Type Stiffened Panels with Bonded Patch)

  • 이환우;김승현
    • 한국해양공학회지
    • /
    • 제22권3호
    • /
    • pp.89-95
    • /
    • 2008
  • Fatigue cracked components often needs to be repaired during service. Standard repair schemes involve strengthening the component by connecting reinforcing members by means of rivets or welding by reducing the crack-tip stress intensity factors. Recent technological advances in fiber reinforced composite materials and adhesive bonding have led to the development of efficient repair schemes. In this study, the influence of various shape parameters on fatigue crack growth in the CCT type uniform thickness plates and the thin-ta-thick type stiffened panels repaired with woven fabric type Kevlar-Epoxy composite patch are studied experimentally.

일정진폭 및 변동하중을 받는 보강판에서 보강재가 피로균열전파에 미치는 영향 (Effect of Stringers in Stiffened Panel under Varying Fatigue Load)

  • 이억섭;이윤표
    • 한국정밀공학회지
    • /
    • 제20권2호
    • /
    • pp.136-145
    • /
    • 2003
  • The integrity of stiffened panels with stringers in airplane structure is generally enhanced by investigating the fatigue crack propagation behavior in detail and providing the technical methodology to deal with the propagating crack. This paper attempts to clarify the effect of load-ratio on the fatigue crack propagation rate and the fatigue life for the thin aluminum 2024-T3. Both the variable and the constant fatigue loading conditions are considered for the fatigue crack propagation behavior in stiffened panels with stringers.

The Stacking Sequence Optimization of Stiffened Laminated Curved Panels with Different Loading and Stiffener Spacing

  • Kim Cheol;Yoon In-Se
    • Journal of Mechanical Science and Technology
    • /
    • 제20권10호
    • /
    • pp.1541-1547
    • /
    • 2006
  • An efficient procedure to obtain the optimal stacking sequence and the minimum weight of stiffened laminated composite curved panels under several loading conditions and stiffener layouts has been developed based on the finite element method and the genetic algorithm that is powerful for the problem with integer variables. Often, designing composite laminates ends up with a stacking sequence optimization that may be formulated as an integer programming problem. This procedure is applied for a problem to find the stacking sequence having a maximum critical buckling load factor and the minimum weight. The object function in this case is the weight of a stiffened laminated composite shell. Three different types of stiffener layouts with different loading conditions are investigated to see how these parameters influence on the stacking sequence optimization of the panel and the stiffeners. It is noticed from the results that the optimal stacking sequence and lay-up angles vary depending on the types. of loading and stiffener spacing.

Numerical Investigation of Residual Strength of Steel Stiffened Panel Exposed to Hydrocarbon Fire

  • Kim, Jeong Hwan;Baeg, Dae Yu;Seo, Jung Kwan
    • 한국해양공학회지
    • /
    • 제35권3호
    • /
    • pp.203-215
    • /
    • 2021
  • Current industrial practices and approaches are simplified and do not describe the actual behavior of plated elements of offshore topside structures for safety design due to fires. Therefore, it is better to make up for the defective methods with integrated fire safety design methods based on fire resistance characteristics such as residual strength capacity. This study numerically investigates the residual strength of steel stiffened panels exposed to hydrocarbon jet fire. A series of nonlinear finite element analyses (FEAs) were carried out with varying probabilistic selected exposures in terms of the jet fire location, side, area, and duration. These were used to assess the effects of exposed fire on the residual strength of a steel stiffened panel on a ship-shaped offshore structure. A probabilistic approach with a feasible fire location was used to determine credible fire scenarios in association with thermal structural responses. Heat transfer analysis was performed to obtain the steel temperature, and then the residual strength was obtained for the credible fire scenarios under compressive axial loading using nonlinear FEA code. The results were used to derive closed-form expressions to predict the residual strength of steel stiffened panels with various exposure to jet fire characteristics. The results could be used to assess the sustainability of structures at risk of exposure to fire accidents in offshore installations.

횡하중을 고려한 압축최종강도에 대한 보강재 치수의 영향 (Effect of Stiffener's Web Height against Axial Compression Ultimate Strength Considering Lateral Pressure Load)

  • 오영철;고재용;오동기
    • 해양환경안전학회지
    • /
    • 제14권1호
    • /
    • pp.89-93
    • /
    • 2008
  • 보강판은 선박이나 해양구조물에서 폭넓게 사용되고 있는 기본적인 강도 부재이다. 이러한 보강판은 선박의 갑판부, 선측부, 선저부에 흔히 사용되고 있다. 보강판은 보강재가 어느 한 방향으로 또는 양방향으로 구성되어 있으며 후자에 대해서 보통 그릴리지라고 한다. 보강판의 좌굴 및 소성붕괴는 선각거더의 파손 원인이 되므로 좌굴 및 최종강도가 정확하게 규명할 필요가 있다. 본 연구에서는 범용유한요소해석코드인 ANSYS를 이용하여 좌굴 및 좌굴 후 거동에 대한 평가를 수행하고 보강재 치수변화, 수압의 영향을 고려하여 압축최종강도에 대해 해석 수행하였다.

  • PDF

폐단면리브로 보강된 곡판의 국부판좌굴에 관한 변수해석적 연구 (Parametric Study on Buckling Behavior of Longitudinally Stiffened Curved Panels by Closed-section Ribs)

  • 아레안 니콜 피 안디코;곽재영;최병호
    • 한국산학기술학회논문지
    • /
    • 제19권1호
    • /
    • pp.714-721
    • /
    • 2018
  • 본 논문은 강교량 거더, 교각, 선박이나 대형 저장 시설 등 주요 구조 부재에 활용되는 곡판 및 강관을 효과적으로 보강하는 방안에 관한 것이다. 최근 연구에서 압축을 받는 평판이 종방향 보강재의 단면회전강성에 의해 국부좌굴강도가 향상되는 특징을 정량적으로 분석하였고, 폐단면리브 단면회전강성과의 상관관계를 규명한 바 있다. 본 논문에서는 곡판에 대해 이와 같은 효과를 정량적으로 검토하고자 한다. 일축압축이 재하된 경우에 폐단면리브로 보강된 두께방향으로 곡률을 가지는 곡판의 좌굴거동을 살펴보기 위해 범용 구조해석 프로그램인 ABAQUS를 이용하여 3차원 유한요소해석 모델을 생성하였다. 이를 통해 좌굴거동에 대한 수치해석을 수행하였으며, 영향인자에 대한 변수해석적 연구를 수행하여 좌굴응력과 좌굴모드의 변동특성을 정량적으로 평가하였다. 폐단면리브 단면회전강성의 구속효과로 인한 좌굴강도 증가효과와 판의 곡률에 따른 좌굴강도 계수를 고려하여 좌굴강도를 추정하는 방법론을 이론적으로 제안하였다. 제안된 공식은 유한요소해석 결과와 비교하여 서로 유의미성이 검토되었다. 또한 평판에서와 마찬가지로 일축압축 상태에서 폐단면리브의 단면강성에의해 부여되는 양측단 회전강성의 증가로 인해 곡판의 국부좌굴강도가 이에 비례하여 증가하였고, 양측단에서 회전이 고정된 곡판의 좌굴강도에 수렴하는 경향을 확인하였다.

보강판의 균열거동해석과 Crack Arrest 설계(I) - Crack Arrest 설계기준의 수치해석 (Crack Growth Analysis and Crack Arrest Design of Stiffened Panels(I) - Numerical Approaches to Crack Arrest Design Chart)

  • 이의종;이환우
    • 한국기계가공학회지
    • /
    • 제4권2호
    • /
    • pp.43-49
    • /
    • 2005
  • The purpose of a fatigue crack arrest design is to prevent a fatigue fracture of machine and structure resulted from unstable crack growth. In all cases of load transfer to second elements such as stringers, doublers or flanges, crack arrest is possible; arrest occurring when the fatigue crack reaches the second element. In the present work, a numerical analysis was carried out to estimate the effect of shape parameters on fatigue crack growth and arrest behavior of integrally stiffened panels. Based on these results, a set of fatigue crack arrest design chart is presented as "non-dimensional arrest load - thickness ratio" relationship.

  • PDF

Post-buckling of higher-order stiffened metal foam curved shells with porosity distributions and geometrical imperfection

  • Mirjavadi, Seyed Sajad;Forsat, Masoud;Barati, Mohammad Reza;Hamouda, A.M.S.
    • Steel and Composite Structures
    • /
    • 제35권4호
    • /
    • pp.567-578
    • /
    • 2020
  • Based on third-order shear deformation shell theory, the present paper investigates post-buckling properties of eccentrically stiffened metal foam curved shells/panels having initial geometric imperfectness. Metal foam is considered as porous material with uniform and non-uniform models. The single-curve porous shell is subjected to in-plane compressive loads leading to post-critical stability in nonlinear regime. Via an analytical trend and employing Airy stress function, the nonlinear governing equations have been solved for calculating the post-buckling loads of stiffened geometrically imperfect metal foam curved shell. New findings display the emphasis of porosity distributions, geometrical imperfectness, foundation factors, stiffeners and geometrical parameters on post-buckling properties of porous curved shells/panels.

Punching Fracture Experiments and Simulations of Unstiffened and Stiffened Panels for Ships and Offshore Structures

  • Park, Sung-Ju;Choung, Joonmo
    • 한국해양공학회지
    • /
    • 제34권3호
    • /
    • pp.155-166
    • /
    • 2020
  • Ductile fracture prediction is critical for the reasonable damage extent assessment of ships and offshore structures subjected to accidental loads, such as ship collisions and groundings. A fracture model combining the Hosford-Coulomb ductile fracture model with the domain of solid-to-shell equivalence model (HC-SDDE), was used in fracture simulations based on shell elements for the punching fracture experiments of unstiffened and stiffened panels. The flow stress and ductile fracture characteristics of JIS G3131 SPHC steel were identified through tension tests for flat bar, notched tension bar, central hole tension bar, plane strain tension bar, and pure shear bar specimens. Punching fracture tests for unstiffened and stiffened panels are conducted to validate the presented HC-DSSE model. The calibrated fracture model is implemented in a user-defined material subroutine. The force-indentation curves and final damage extents obtained from the simulations are compared with experimental results. The HC-DSSE fracture model provides reasonable estimations in terms of force-indentation paths and residual damage extents.