• 제목/요약/키워드: Sticking Coefficient

검색결과 48건 처리시간 0.023초

의용소자로 응용하기 위해 제작한 BSCCO 박막의 부착계수 해석 (Analysis of Sticking Coefficient in BSCCO Thin Film Fabricatied for apply to Biomedical device)

  • 양승호;박용필
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 Vol.19
    • /
    • pp.351-352
    • /
    • 2006
  • BSCCO thin films are fabricated by an ion beam sputtering method, and sticking coefficients of the respective elements are evaluated. The sticking coefficient of Bi element in BSCCO film formation was observed to show a unique temperature dependence; it was almost a constant value of 0.49 below about $730^{\circ}C$ and decreased linearly over about $730^{\circ}C$. In contrast, Sr and Ca, displayed no such remarkable temperature dependence. This behavior of the sticking coefficient was explained consistently on the basis of the evaporation and sublimation processes of $Bi_2O_3$. It was concluded that Bi(2212) thin film constructs from the partial melted Bi(2201) phase with the aid of the liquid phase of $Bi_2O_3$.

  • PDF

Bi 초전도 박막의 부착계수 해석 (Analysis of Sticking Coefficient in Bi-Superconducting Thin film)

  • 천민우;박용필;이성일
    • 한국전기전자재료학회논문지
    • /
    • 제15권11호
    • /
    • pp.997-1002
    • /
    • 2002
  • BSCCO thin films are fabricated by an ion beam sputtering method, and sticking coefficients of the respective elements are evaluated. The sticking coefficient of Bi element in BSCCO film formation was observed to show a unique temperature dependence; it was almost a constant value of 0.49 below about 730$^{\circ}C$ and decreased linearly over about 730$^{\circ}C$ In contrast, Sr and Ca, displayed no such remarkable temperature dependence. This behavior of the sticking coefficient was explained consistently on the basis of the evaporation and sublimation processes of Bi$\sub$2/O$\sub$3/. It was concluded that Bi(2212) thin film constructs from the partial melted Bi(2201) phase with the aid of the liquid phase of Bi$\sub$2/O$\sub$3/.

BSCCO 박막의 부착계수 해석 (Analysis of Sticking Coefficient in BSCCO Thin Film)

  • 천민우;박용필
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 추계학술대회 논문집 Vol.15
    • /
    • pp.252-255
    • /
    • 2002
  • BSCCO thin films are fabricated by an ion beam sputtering method, and sticking coefficients of the respective elements are evaluated. The sticking coefficient of Bi element in BSCCO film formation was observed to show a unique temperature dependence; it was almost a constant value of 0.49 below about $730^{\circ}C$ and decreased linearly over about $730^{\circ}C$. In contrast, Sr and Ca, displayed no such remarkable temperature dependence. This behavior of the sticking coefficient was explained consistently on the basis of the evaporation and sublimation processes of $Bi_{2}O_{3}$. It was concluded that Bi(2212) thin film constructs from the partial melted Bi(2201) phase with the aid of the liquid phase of $Bi_{2}O_{3}$.

  • PDF

스퍼터링 법에 의한 BSCCO 단결정 성장의 부착 계수 향상 (Enhanced sticking coefficient in the BSCCO single crystal grown by the sputtering method)

  • 천민우;양승호;박용필
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.585-586
    • /
    • 2005
  • BSCCO thin films were fabricated by an ion beam sputtering method with an ultra-low growth rate, and sticking coefficients of the respective elements are evaluated. The sticking coefficient of Bi element in BSCCO film formation was observed to show a unique temperature dependence; it was almost a constant value of 0.49 below about $730^{\circ}C$ and decreased linearly over about $730^{\circ}C$. In contrast, Sr and Ca, displayed no such remarkable temperature dependence. This behavior of the sticking coefficient was explained consistently on the basis of the evaporation and sublimation processes of Bi2O3. It is considered that the liquid phase of the bismuth oxide plays an important role in the Bi 2212 phase formation in the co-deposition process.

  • PDF

Feature Scale Simulation of Selective Chemical Vapor Deposition Process

  • Yun, Jong-Ho
    • 한국진공학회지
    • /
    • 제4권S1호
    • /
    • pp.190-195
    • /
    • 1995
  • The feature scale model for selective chemical vapor deopsition process was proposed and the simulation was performed to study the selectivity and uniformity of deposited thin film using Monte Carlo method and string algorithm. The effect of model parameters such as sticking coefficient, aspect ratio, and surface diffusion coefficient on the deposited thin film pattern was improved for lower sticking coefficient and higher aspect ratio. It was revealed that the selectivity loss ascrives to the surface diffusion. Different values of sticking coefficients on Si and on SiO2 surface greatly influenced the deopsited thin film profile. In addition, as the lateral wall angle decreased, the selectively deposited film had improved uniformity except the vicinity of trench wall. The optimum eondition for the most flat selective film deposition pattern is the case with low sticking coefficient and slightly increased surface diffusion coefficient.

  • PDF

동시 스퍼터법으로 제작한 Bi 초전도 박막의 성장 모델 (Growth Model of Bi-Superconducting Thin Film Fabricated by Co-sputtering Method)

  • Chun, Min-Woo;Park, Yong-Pil
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2002년도 추계종합학술대회
    • /
    • pp.796-799
    • /
    • 2002
  • BSCCO thin films are fabricated via a co-deposition process at an ultra-low growth rate using ion beam sputtering. The sticking coefficient of Bi element exhibits a characteristic temperature dependence. This temperature dependence of the sticking coefficient was explained consistently on the basis of the evaporation and sublimation processes of Bi$_2$O$_3$.

  • PDF

The Influence of Bi-Sticking Coefficient in Bi-2212 Thin Film

  • Lee, Hee-Kab;Park, Yong-Pil;Lee, Joon-Ung
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 춘계학술대회 논문집 전자세라믹스 센서 및 박막재료 반도체재료 일렉트렛트 및 응용기술
    • /
    • pp.152-156
    • /
    • 2000
  • Bi-thin films are fabricated by an ion beam sputtering, and sticking coefficients of the respective elements are evaluated. The sticking coefficient of Bi element exhibits a characteristic temperature dependence : almost a constant value of 0.49 below $730^{\circ}C$ and decreases linearly with temperature over $730^{\circ}C$. This temperature dependence can be elucidated from the evaporation and sublimation rates of bismuth oxide, $Bi_2O_3$, from the film surface. It is considered that the liquid phase of the bismuth oxide plays an important role in the Bi(2212) phase formation in the co-deposition process.

  • PDF

Characteristics of Sticking Coefficient in BSCCO Thin Film

  • 조춘남;안준호;오재한;최운식;박용필
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 제2회 학술대회 논문집 일렉트렛트 및 응용기술전문연구회
    • /
    • pp.59-63
    • /
    • 2000
  • BSCCO thin films are fabricated via a co-deposition process by an ion beam sputtering with an ultra-low growth rate, and sticking coefficients of the respective elements are evaluated. The sticking coefficient of Bi element exhibits a characteristic temperature dependence : almost a constant value of 0.49 below $730^{\circ}C$ and decreases linearly with temperature over $730^{\circ}C$ This temperature dependence can be elucidated from the evaporation and sublimation rates of bismuth oxide, $Bi_2O_3$, from the film surface. It is considered that the liquid phase of the bismuth oxide plays an important role in the Bi(2212) phase formation in the co-deposition process.

  • PDF

공증착법으로 제작한 BSCCO 초전도 박막의 부착계수 해석 (Analysis of Sticking Coefficient in BSCCO Superconductor Thin Film Fabricated by Co-deposition)

  • 안인순;천민우;박용필
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집 Vol.14 No.1
    • /
    • pp.300-303
    • /
    • 2001
  • BSCCO thin films are fabricated via a co-deposition process by an ion beam sputtering with an ultra-low growth rate, and sticking coefficients of the respective elements are evaluated. The sticking coefficient of Bi element exhibits a characteristic temperature dependence : almost a constant value of 0.49 below $730^{\circ}C$ and decreases linearly with temperature over $730^{\circ}C$. This temperature dependence can be elucidated from the evaporation and sublimation rates of bismuth oxide, $Bi_{2}O_{3}$, from the film surface. It is considered that the liquid phase of the bismuth oxide plays an important role in the Bi 2212 phase formation in the co-deposition process.

  • PDF

Bi-sticking Coefficient of Bi-superconducting Thin Film Prepared by IBS Method

  • Lee, Hee-Kab;Lee, Joon-Ung;Park, Yong-Pil
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 추계학술대회 논문집
    • /
    • pp.213-216
    • /
    • 1999
  • BSCCO thin films are fabricated via a co-deposition process by an ion beam sputtering with an ultra-low growth rate, and sticking coefficients of the respective elements are evaluated. The sticking coefficient of Bi element exhibits a characteristics temperature dependence : almost a constant value of 0.49 below 730$^{\circ}C$ and decreases linearly with temperature over 730$^{\circ}C$. This temperature dependence can be elucidated from the evaporation and sublimation rates of bismuth oxide, Bi$_2$O$_3$ from the film surface. It is considered that the liquid phase of the bismuth oxide plays an important role in the Bi(2212) phase formation in the co-deposition process.

  • PDF