• Title/Summary/Keyword: Stick-slip

Search Result 209, Processing Time 0.028 seconds

The stick-slip decomposition method for modeling large-deformation Coulomb frictional contact

  • Amaireh, Layla. K.;Haikal, Ghadir
    • Coupled systems mechanics
    • /
    • v.7 no.5
    • /
    • pp.583-610
    • /
    • 2018
  • This paper discusses the issues associated with modeling frictional contact between solid bodies undergoing large deformations. The most common model for friction on contact interfaces in solid mechanics is the Coulomb friction model, in which two distinct responses are possible: stick and slip. Handling the transition between these two phases computationally has been a source of algorithmic instability, lack of convergence and non-unique solutions, particularly in the presence of large deformations. Most computational models for frictional contact have used penalty or updated Lagrangian approaches to enforce frictional contact conditions. These two approaches, however, present some computational challenges due to conditioning issues in penalty-type implementations and the iterative nature of the updated Lagrangian formulation, which, particularly in large simulations, may lead to relatively slow convergence. Alternatively, a plasticity-inspired implementation of frictional contact has been shown to handle the stick-slip conditions in a local, algorithmically efficient manner that substantially reduces computational cost and successfully avoids the issues of instability and lack of convergence often reported with other methods (Laursen and Simo 1993). The formulation of this approach, however, has been limited to the small deformations realm, a fact that severely limited its application to contact problems where large deformations are expected. In this paper, we present an algorithmically consistent formulation of this method that preserves its key advantages, while extending its application to the realm of large-deformation contact problems. We show that the method produces results similar to the augmented Lagrangian formulation at a reduced computational cost.

Study on the Frictional Characteristics of Micro-particles for Tribological Application (미세입자의 트라이볼로지적 응용을 위한 마찰특성 고찰)

  • Sung, In-Ha;Han, Hung-Gu;Kong, Ho-Sung
    • Tribology and Lubricants
    • /
    • v.25 no.2
    • /
    • pp.81-85
    • /
    • 2009
  • Interests in micro/nano-particles have been greatly increasing due to their wide applications in various fields such as environmental and medical sciences as well as engineering. In order to obtain a fundamental understanding of the tribological characteristics at particle-surface contact interface, frictional behaviors according to load/pressure and materials were obtained by using atomic force microscope(AFM) cantilevers with different stiffnesses and tips. Lateral contact stiffnesses were observed in various tip-surface contact situations. Experimental results show that stick-slip friction behavior occurs even when the colloidal probes with a particle of a few micrometers in diameter, which have a relatively large contact area and lack a well-shaped apex, were used. This indicates that atomic stick-slip friction may be a more common phenomenon than it is currently thought to be. Also, experimental results were investigated by considering the competition between the stiffness of the interatomic potential across the interface and the elastic stiffnesses of the contacting materials and the force sensor itself.

Molecular Dynamics Simulation of Contact Process in AFM/FFM Surface Observation

  • Shimizu, J.;Zhou, L.;Eda, H.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.61-62
    • /
    • 2002
  • In order to clarify the contact mechanism between specimen surface and probe tip in the surface observation by the AFM (atomic force microscope) or the FFM (friction force microscope), several molecular dynamics simulations have been performed. In the simulation, a 3-dimensional simulation model is proposed where the specimen and the probe are assumed to consist of mono-crystal line copper and a carbon atom respectively and the effect of cantilever stiffness is also taken into considered. The surface observation process on a well-defined Cu{100} is simulated. The influences of cantilever stiffness on the reactive force images and the behavior of probe tip were evaluated. As a resuIt, several phenomena similar to those observed by the actual surface observation experiment, such as double-slip behavior and dispersion in the stick-slip wave period were observed.

  • PDF

Analysis of Contact Stress with Partial Slip in Wheel-rail Rolling Contact (차륜-레일 구름접촉 시 슬립율에 따른 접촉응력의 변화 해석)

  • Lee, Dong-Hyong;Seo, Jung-Won;Kwon, Seok-Jin;Choi, Ha-Yong;Kim, Chul-Jae
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.643-648
    • /
    • 2011
  • Fatigue crack in most rails take place by rolling contact between wheel and rail in railway industry. Therefore, it is critical to understand the rolling contact phenomena, especially for the three-dimensional situation. In this paper the steady-state rolling contact problem of KTX wheel and rail (UIC60) has been studied with three-dimensional finite element analysis. The variation of contact pressure and contact stresses on rolling contact surface were obtained using the finite element method. The three-dimensional distribution of contact stresses on the contact surface are investigated. Results show that the distribution of shear stress and contact stress (von Mises) on the contact surface varies rapidly as a result of the variation of stick-slip region. The contact stress at the leading edge is greater than at the trailing edge because of stick and slip phenomena.

  • PDF

An Experimental Study on the Stick-Slip Vibration of the Clutch during Starting of a Vehicle (차량 출발 시 클러치에서의 고착-미끄럼 진동현상에 관한 실험적)

  • Kim, Sang-Soo;Jang, Han-Kee;Cho, Yeon;Park, Young-Won;Chai, Jang-Bom
    • Journal of KSNVE
    • /
    • v.11 no.3
    • /
    • pp.461-470
    • /
    • 2001
  • A friction-type clutch system sometimes generates spick-slip vibration during engagement, which disturbs smooth start of a car and makes a passenger uncomfortable. In this study, the spick-slip vibration in four types of friction couples was investigated at two different engagement conditions respectively of which the amount of slip time and clutch travel was varied. Results are found as follows. First, the vibration increased at the condition of small engine torque and large torque fluctuations due to higher harmonics of engine speed. Second, the friction couple without a pre-damper has advantages of reducing the vibration. This study also suggested an evaluation method of vehicle vibration in the view point of human perception by using the frequency weighting of ISO2631-1.

  • PDF

Fretting Wear Characteristics of STS304 Steel in Seawater (해수 중에서 STS304강의 프레팅 마멸특성)

  • 김은구;김태형;김석삼
    • Tribology and Lubricants
    • /
    • v.16 no.4
    • /
    • pp.302-307
    • /
    • 2000
  • The fretting wear characteristics of STS304 steel in seawater were investigated experimentally. A fretting wear tester was designed to be suitable for this fretting test. This study was focused on the effects due to the combination of normal load, slip amplitude and number of cycles and corrosive environment as the main factors of fretting. The results of this study showed that the wear volume increased abruptly at slip amplitude between 70 $\mu\textrm{m}$∼100 $\mu\textrm{m}$ by fracture of oxide layers but above that slip amplitude the wear volume increased steadily.

Fretting Wear Characteristics of Nuclear Fuel Rod Material (핵연료봉재의 프레팅 마멸 특성)

  • 김태형;조광희;김석삼
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1996.04b
    • /
    • pp.25-29
    • /
    • 1996
  • The fretting wear characteristics for Zircaloy-4 tube used as fuel rod in the nuclear power plant have been investigated. The fretting wear tester was designed and manufactured for this experiment. This study was focused on main factors of fretting wear, cycle, slip amplitude and normal load. The worn surfaces were observed by SEM.

  • PDF

Behavioral Characteristics of the Yangsan Fault based on Geometric Analysis of Fault Slip (단층슬립의 기하분석에 의한 양산단층의 거동 특성)

  • Chang, Chun-Joong;Chang, Tae-Woo
    • The Journal of Engineering Geology
    • /
    • v.19 no.3
    • /
    • pp.277-285
    • /
    • 2009
  • In order to assess the fault behavior by the geometric analysis of fault slip, the study area between Yangsan city and Shinkwang-myon, Pohang city along the strike of the Yangsan fault is divided into 5 domains($A{\sim}E$ domains) based on the strike change of main fault, the type of fault termination, the cyclic variation of fault zone width, deformation pattern of fault rocks and angular deviation of secondary shears. And, we would apply the relationship between the mode of fault sliding and the resultant deformation texture obtained from previous several experimental studies of simulated fault gouge to the study of the Yangsan fault. To understand sliding behavior of the fault we measured the data of fault attitude and fault slip, and analyzed relationships between the main fault and secondary Riedel shear along the Yangsan fault. The sliding behavioral patterns in each section were analyzed as followings; the straight sections of A, D and E domains were analyzed as the creeping section of stably sliding. In contrast, the curved section of B domain was analyzed as the locked section of stick-slip movement.

이송계에서 이송중량이 동적정도에 미치는 영향

  • 홍성오;김홍배;조규재
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.528-535
    • /
    • 2002
  • In order to achieve high precision machine tools, the research for performance enhancement of feed drive systems is required. Development of the high speed feed drive system has been a major issue for the past few decades in machine tool industries. The reduction of the tool change time as well as rapid travel time can enhance the productivity. However, the high speed feed drive system generates more heat in nature, which leads thermal expansion that has adverse effects on the accuracy of machined parts. Stick-slip friction has a great influence on the contouring accuracy of CNC machine tools. In this paper table levitation system has been developed for the stick-slip in a feed drive systems. And also, the driving position is set near the center of the main slideway. From the results, it is confirmed that yaw error and straightness can be improved.

  • PDF