• 제목/요약/키워드: Stick-slip

검색결과 209건 처리시간 0.035초

공작기계 이송계의 Stick-Slip 특성에 관한 연구 (A study on the Stick-slip Characteristic of Machine Tool Feeding System.)

  • 박종권;이후상
    • 한국기계연구소 소보
    • /
    • 통권18호
    • /
    • pp.29-35
    • /
    • 1988
  • When low sliding velocities in the boundary lubrication range are operating, irregular movements frequently occur which are a result of the stick-slip phenomenon. Such slide motions are undesirable in precision machine tools, particularly with feed back systems used in numerical and adaptive control machine tools. Accordingly, this paper reports analytical and experimental studies in the stick-slip characteristic of machine tool feeding system. The main conclusions of this study are as follows; The tendency towards stick-slip effects may be reduced by; 1). Reducing the drop in friction coefficient in the Stribeck curve(on the rising part of the friction characteristic at higher sliding speeds, the system is stable all the time) 2). Reducing the transition velocity by the use of a higher viscosity lubricating oil. 3). Increasing the stiffness(Damping)and reducing normal load(Sliding mass) Therefore, the Critical velocity is decided from the above conclusions and in designing of machine tool, feed rates(sliding velocity)must be design the more than critical velocity.

  • PDF

공작기계 이송시 스틱슬립에 관한 고찰 (A Study of th stick-slip by feed of the machining center)

  • 정성택;박종남;조규재
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.420-424
    • /
    • 1997
  • n the ballscrew slide system the ~najor problems in accomplishing the high-speed and high-precision are the friction between elements and the decrease of axial stiffness. Especially the friction on the guide have a bad effect on the precision of slidlng. Furthermore stick-slip occur when the low stiffness of slide system. The sticli-slip have a bad influence on the precision. In this research, the affection of stick-slip friction to the precision of the slide system is studied and the possible solution of the precision is proixjsed.

  • PDF

슬립-스틱 구동기 설계를 위한 4자유도 시스템 강제진동 해석 (Forced Vibration Analysis of 4 DOF system for Design of Slip-Stick Actuator)

  • 송명규;허영준;박노철;박영필;박경수;임수철;박재혁
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.214-215
    • /
    • 2009
  • The friction is inevitable and unpredictable phenomena, so most mechanical systems are designed to low friction effect by using bearings and lubricants. However, the slip-stick actuator applies the friction force to its movement. The slip-stick mechanism is applied the piezoelectric actuator to overcome short displacement. Fast response of piezoelectric actuator is also good characteristic for the slip-stick mechanism. However, the piezoelectric actuator with slip-stick mechanism isn't common, because its cost and driving voltage are too high. In this paper, a voice-coil actuator with slip-stick mechanism is introduced. The cost and the driving voltage of a voice-coil actuator are much less than the piezoelectric actuator. And a dynamic vibration amplifier is proposed to adjust the dynamic performance of the actuator. By the results of numerical analysis, the feasibility of a dynamic vibration amplifier is verified.

  • PDF

Cu CMP에서 스틱-슬립 마찰과 스크래치에 관한 연구 (A Study on Stick-slip Friction and Scratch in Cu CMP)

  • 이현섭;박범영;정석훈;정재우;서헌덕;정해도
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.653-654
    • /
    • 2005
  • Stick-slip friction is one of the material removal mechanisms in tribology. This stick-slip friction occurs when the static friction force is larger than the dynamic friction force, and make the friction curve fluctuated. In the friction force monitoring system for chemical mechanical polishing(CMP), the friction force also vibrates just as stick-slip friction. It seems that the stick-slip friction causes scratches on the surface of moving parts. In this paper, A study on the scratches which occur during copper CMP was conducted in a view of stick-slip friction.

  • PDF

Stick-Slip Oscillation of Hydraulic Telescopic Boom

  • Baek, Il-Hyun;Jung, Jae-Youn;Song, Kyu-Keun;Kim, Shin
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.377-378
    • /
    • 2002
  • In many dynamic systems, unwanted vibrations which may arise during operation of machines are costly in terms of reduction of performance and service life. Sometimes these risky oscillations endanger equipment and personnel. When hydraulic telescopic booms taken large mass are driven at slow speeds between the two pads, unstable oscillations occur through the stick-slip at the sliding parts and become more severe and saw-toothed. This paper supposes few models for the telescopic boom in the multi-degree of freedom system, and attempts a theoretical approach for the numerical analysis in its stick-slip condition, It was verified that this theoretical approach has an effect on estimate of stick-slip in the one-degree as well as multi-degree of freedom system.

  • PDF

On the Motion of the Structure Varying Multibody Systems with Two-Dimensional Dry Friction

  • Xie Fujie;Wolfs Peter;Cole Colin
    • Journal of Mechanical Science and Technology
    • /
    • 제19권4호
    • /
    • pp.927-935
    • /
    • 2005
  • In the present paper the dynamics of the structure varying multibody systems caused by stick-slip motion with two-dimensional dry friction are analyzed. The methods to determine friction force both in stick and slip states are described. The direct method of considering the wagon bogie system as a structure varying system was used to consider two dimensional friction at the wheelset-side frame connection. The concept of friction direction angle used to determine the friction force components of two-dimensional dry friction both in the stick and slip motion states was used. A speed depended friction coefficient was used and described approximately by hyperbolic secant function. All switch conditions were derived and friction forces both for stick and slip states. Some simulation results are provided.

마찰을 고려한 차량 동력전달계의 Stick-Slip 현상에 관한 연구 (A Study on the Stick-Slip Phenomenon of the Driveline System of a Vehicle in Consideration of Friction)

  • 윤영진;홍동표;정태진
    • 한국자동차공학회논문집
    • /
    • 제3권4호
    • /
    • pp.19-29
    • /
    • 1995
  • This paper discusses the stick-slip phenomenon of the driveline system of a vehicle in consideration of friction. Friction is operated on the between of flywheel and clutch disk. The expressions for obtaining the results have been derived from the equation of motion of a three degree of freedom frictional torsion vibration system which is made up driving part(engine, flywheel), driven part(clutch, transmission) and dynamic load part(vehicle body) by applying forth-order Rungekutta method. It was found that the great affect parameters of the stick-slip or stick motion were surface pressure force between flywheel and clutch disk, time decay parameter of surface pressure force and 1st torsional spring constant of clutch disk when driveline system had been affected by friction force. The results of this study can be used as basic design data of the clutch system for the ride quality improvement of a car.

  • PDF

제동시 발생하는 리어 드럼브레이크 Grunt(stick-slip) Noise 개선 (Rear Drum Brake Grunt(stick-slip) Noise Improvement on Braking During Nose-dive & Return Condition)

  • 홍일민;장명훈;김선호;최홍석
    • 한국소음진동공학회논문집
    • /
    • 제23권9호
    • /
    • pp.781-788
    • /
    • 2013
  • Grunt(stick-slip) noise happens between rear lining and drum on braking condition while vehicle is returning to steady position after nose-dive. The study presents a new testing and analysis methods for improving brake grunt noise on vehicle. Grunt noise is called a kind of stick slip noise with below 1 kHz frequency that is caused by the surfaces alternating between sticking to each other and sliding over each other with a corresponding change in friction force. This noise is typically come from that the static friction coefficient of surfaces is much higher than the kinetic friction coefficient. For the identification of the excitation mechanism and improvement of grunt noise, it is necessary to study variable parameters of rear drum brake systems on vehicle and to implement CAE analysis with stick slip model of drum brake. The aim of this study has been to find solution parameters throughout test result on vehicle and dynamo test. As a result of this study, it is generated from stick slip between rear lining and rear drum and it can be solved to reduce contact angle of lining with asymmetric and is effected not only brake drum strength but also rear brake size and brake factor.

제동시 발생하는 리어 드럼브레이크 grunt (stick-slip) noise 개선 (Rear drum brake grunt (stick-slip) noise improvement on braking during nose-dive & return condition)

  • 홍일민;장명훈;김선호;최홍석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 추계학술대회 논문집
    • /
    • pp.743-749
    • /
    • 2012
  • Grunt (Stick-slip) noise happens between rear lining and drum on braking condition while vehicle is returning to steady position after nose-dive. The study presents a new testing and analysis methods for improving brake grunt noise on vehicle. Grunt noise is called a kind of stick slip noise with below 1kHz frequency that is caused by the surfaces alternating between sticking to each other and sliding over each other with a corresponding change in friction force. This noise is typically come from that the static friction coefficient of surfaces is much higher than the kinetic friction coefficient. For the identification of the excitation mechanism and improvement of grunt noise, it is necessary to study variable parameters of rear drum brake systems on vehicle and to implement CAE analysis with stick slip model of drum brake. The aim of this study has been to find solution parameters throughout test result on vehicle and dynamo test. As a result of this study, it is generated from stick slip between rear lining and rear drum and it can be solved to reduce contact angle of lining with asymmetric and is effected not only brake drum strength but also rear brake size and brake factor.

  • PDF