• Title/Summary/Keyword: Stick

Search Result 877, Processing Time 0.027 seconds

Selfie Stick design case for enhancing portability and preventing error of pushing mobile phone button (휴대성을 강화한 셀카봉 디자인 제안)

  • Kim, Gyeyeong
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.496-499
    • /
    • 2015
  • The objective of the study is to develop selfie sticks to enhance portability and prevent error of pushing mobile phone button. The main target of selfie sticks is women and the size of selfie sticks is too big to put it in their bag. Also when people put mobile phone in a selfie stick, people push its button easily. Sometimes mobile phone is turned off or the volume is controlled because of pushing its button. The researcher focused on designing a solution that enhances portability and preventing error of pushing the button. The researcher understood structure of selfie stick. It consists of a mobile phone supporter and a length adjuster. The researcher designed the mobile phone supporter for enhancing portability and the length adjuster for preventing to push the mobile phone. The researcher designed a part which connects a mobile phone supporter with a length adjuster and made selfie stick fold. Also, sponges are partly put on the mobile supporter. It can reduce situation of pushing the mobile phone button. The selfie stick design from the study has an opportunity to distinguish using the product and carrying it and have people use the selfie stick conveniently.

  • PDF

Rear Drum Brake Grunt(stick-slip) Noise Improvement on Braking During Nose-dive & Return Condition (제동시 발생하는 리어 드럼브레이크 Grunt(stick-slip) Noise 개선)

  • Hong, Ilmin;Jang, Myunghoon;Kim, Sunho;Choi, Hongseok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.9
    • /
    • pp.781-788
    • /
    • 2013
  • Grunt(stick-slip) noise happens between rear lining and drum on braking condition while vehicle is returning to steady position after nose-dive. The study presents a new testing and analysis methods for improving brake grunt noise on vehicle. Grunt noise is called a kind of stick slip noise with below 1 kHz frequency that is caused by the surfaces alternating between sticking to each other and sliding over each other with a corresponding change in friction force. This noise is typically come from that the static friction coefficient of surfaces is much higher than the kinetic friction coefficient. For the identification of the excitation mechanism and improvement of grunt noise, it is necessary to study variable parameters of rear drum brake systems on vehicle and to implement CAE analysis with stick slip model of drum brake. The aim of this study has been to find solution parameters throughout test result on vehicle and dynamo test. As a result of this study, it is generated from stick slip between rear lining and rear drum and it can be solved to reduce contact angle of lining with asymmetric and is effected not only brake drum strength but also rear brake size and brake factor.

Experimental Interpretation of Heat Transmits Pattern on Warm Needling (온침의 열전달 특성에 대한 실험적 해석)

  • Yang, Seung-Bum;Park, Soon-Jae;Lee, Jae-Gun;Jung, Ji-Chul;Kim, Jae-Hyo
    • Korean Journal of Acupuncture
    • /
    • v.34 no.3
    • /
    • pp.109-115
    • /
    • 2017
  • Objectives : Many researches have studied warm needling technique to standardize its treatment by temperature measurement and material differences in the effectiveness. The purpose of this study is to compare the temperature changes of the acupuncture needle shaft during the combustion process of the moxa stick to determine the heat transfer pattern of the warn needling. Methods : A moxa stick($7{\times}8mm$) was connected to one side of the needle shaft using a stainless steel needle(ø 0.3 mm, ø 0.5 mm, ø 0.8 mm, shaft length 40 mm) with the needle handle removed. During the warm needling, temperature changes of the needle shaft were observed with an infrared camera(Flir E30) and an infrared thermometer(TESTO 845). Results : In the normal condition, heat transmit of needle shaft increased at spots 10 mm and 25 mm below the moxa stick. The amount of heat transmit increased with the diameter of needle shaft. However, when the heat shield was installed to exclude radiant heat from the moxa stick, heat transfer was less at 10 mm below the moxa stick and no temperature change was observed at 25 mm below the moxa stick. Heat transfer by warm needling does not reach the end of needle shaft even in ø 0.8 mm needle. Conclusions : It is suggested that the radiant heat of moxa stick results in the heat transmit of acupuncture needle shaft. Thus, radiant heat transmit must be considered as one of the heat transfer characteristics of the warm needling.

Flight Dynamic Identification of a Model Helicopter using CIFER®(I) - Flight test for the acquisition of transmitter input data - (CIFER®를 이용한 무인 헬리콥터의 동특성 분석 (I) - 조종기 제어 입력 데이터 획득을 위한 비행시험 -)

  • Park, Hee-Jin;Koo, Young-Mo;Bae, Yeoung-Hwan;Oh, Min-Suk;Yang, Chul-Oh;Song, Myung-Hyun
    • Journal of Biosystems Engineering
    • /
    • v.36 no.6
    • /
    • pp.467-475
    • /
    • 2011
  • Aerial spraying technology using a small unmanned helicopter is an efficient and practical tool to achieve stable agricultural production to improve the working condition. An attitude controller for the agricultural helicopter would be helpful to aerial application operator. In order to construct the flight controller, a state space model of the helicopter should be identified using a dynamic analysis program, such as CIFER$^{(R)}$. To obtain the state space a model of the helicopter, frequency-sweep flight tests were performed and time history data were acquired using a custom-built stick position transmitter. Four elements of stick commands were accessed for the collective pitch (heave), aileron (roll), elevator (pitch), rudder (yaw) maneuvers. The test results showed that rudder stick position signal was highly linear with rudder input channel signal of the receiver; however, collective pitch stick position signal was exponentially manipulated for the convenience of control stick handling. The acquired stick position and flight dynamic data during sweep tests would be analyzed in the followed study.

Rear drum brake grunt (stick-slip) noise improvement on braking during nose-dive & return condition (제동시 발생하는 리어 드럼브레이크 grunt (stick-slip) noise 개선)

  • Hong, Ilmin;Jang, Myunghoon;Kim, Sunho;Choi, Hongseok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.743-749
    • /
    • 2012
  • Grunt (Stick-slip) noise happens between rear lining and drum on braking condition while vehicle is returning to steady position after nose-dive. The study presents a new testing and analysis methods for improving brake grunt noise on vehicle. Grunt noise is called a kind of stick slip noise with below 1kHz frequency that is caused by the surfaces alternating between sticking to each other and sliding over each other with a corresponding change in friction force. This noise is typically come from that the static friction coefficient of surfaces is much higher than the kinetic friction coefficient. For the identification of the excitation mechanism and improvement of grunt noise, it is necessary to study variable parameters of rear drum brake systems on vehicle and to implement CAE analysis with stick slip model of drum brake. The aim of this study has been to find solution parameters throughout test result on vehicle and dynamo test. As a result of this study, it is generated from stick slip between rear lining and rear drum and it can be solved to reduce contact angle of lining with asymmetric and is effected not only brake drum strength but also rear brake size and brake factor.

  • PDF

Dynamic Analysis of External Fuel Tank and Pylon Using Stick Model (스틱모델을 이용한 외부연료탱크 및 파일런 동특성 해석)

  • Kim, Hyun-gi;Kim, Sung Chan;Park, Sung Hwan;Choi, Hyun-Kyung;Hong, Seung Ho;Ha, Byung Kun
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.1
    • /
    • pp.21-27
    • /
    • 2020
  • Aircraft should be equipped with various external stores for mission performance. Since these external stores may cause structural instability of aircraft, an evaluation of the effects between the aircraft and the external stores is required. For this purpose, an aircraft dynamic characteristics analysis reflecting an external store was performed, and the finite element model for the analysis of aircraft dynamic characteristics should simulate the dynamic characteristics of the component as accurately as possible while using a minimum of the nodes and elements. In this study, a stick model was constructed for dynamic characteristics analysis of the external fuel tank and installation pylon using MSC Patran/Nastran. For the calculation of the equivalent stiffness of the stick model, a simple beam theory was applied to construct the stick model of each part, and the validity of each stick models was confirmed by mode comparison with the fine model. Additionally, the model analysis of the stick model assembly, simulating a pylon equipped with an external fuel tank was performed to confirm that the basic modes required for the analysis of aircraft dynamic characteristics are well extracted. Finally, it was confirmed that the developed stick model assembly could be used for analysis of aircraft dynamic characteristics by comparing the errors in modes between the fine model assembly and the stick model assembly.

Structural Relationship of Variables Regarding Nurse's Preventive Action against Needle Stick Injury (간호사의 주사바늘자상 예방행위관련 변인들 간의 구조모형 분석)

  • Ju, Hyeon Jeong;Lee, Ji Hyun
    • The Journal of Korean Academic Society of Nursing Education
    • /
    • v.21 no.2
    • /
    • pp.168-181
    • /
    • 2015
  • Purpose: This study was conducted to determine the factors affecting the prevention of needle stick injury. Methods: Data collection was conducted during the period July 15-31, 2013 by a self-administered questionnaire involving 220 nurses working in 7 hospitals. The data was analyzed by SPSS v18 and AMOS v18. Results: Actions by nurses to prevent needle stick injury were directly and indirectly influenced by perceived benefits, attitude toward the behavior, perceived behavioral control, and intention underlying the behavior. Specially, perceived behavioral control is verified to have not only direct influence but also indirect influence on the performance of preventive action through the intention underlying the behavior. Also, perceived benefits indirectly influence the intention toward the behavior and performance of preventive action through attitude toward the behavior and perceived behavioral control. The predictor variables in this model are 52% explicable in terms of intention of prevention action against needle stick injury, and 66% explicable in terms of performance of preventive action. Conclusion: To ensure high performance of preventive action against needle stick injury, constructing not only the solution that inspires the intention toward behavior but also a system that can positively solve and improve obstructive factors in behavioral performance is of primary importance.

Micro-positioning of a Smart Structure using an Enhanced Stick-slip Model (향상된 스틱-슬립 마찰 모델을 이용한 스마트 구조물의 마이크로 위치제어)

  • Lee, Chul-Hee;Jang, Min-Gyu;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.230-236
    • /
    • 2008
  • In this paper, a model-based stick-slip compensation for the micro-positioning is proposed using an enhanced stick-slip model based on statistical rough surface contact model. The smart structure is comprised with PZT (lead (Pb) zirconia (Zr) Titanate (Ti)) based stack actuator incorporating with the PID (Proportional-Integral-Derivative) control algorithm, mechanical displacement amplifier and positioning devices. For the stick-slip compensation, the elastic-plastic static friction model is used considering the elastic-plastic asperity contact in the rough surfaces statistically. Mathematical model of system for the positioning apparatus was derived from the dynamic behaviors of structural parts. PID feedback control algorithms with the developed stick-slip model as well as feedforward friction compensator are formulated for achieving the accurate positioning performance. Experimental results are provided to show the performances of friction control using the developed positioning apparatus.

  • PDF

Load and Stiffness Dependence of Atomistic Sliding Friction (원자스케일 마찰의 하중 및 강성 의존성)

  • Sung, In-Ha
    • Tribology and Lubricants
    • /
    • v.23 no.1
    • /
    • pp.9-13
    • /
    • 2007
  • Despite numerous researches on atomic-scale friction have been carried out for understanding the origin of friction, lots of questions about sliding friction still remain. It is known that friction at atomic-scale always shows unique phenomena called 'stick-slips' which reflect atomic lattice of a scanned surface. In this work, experimental study on the effects of system stiffnesses and load on the atomic-scale stick-slip friction of graphite was performed by using an Atomic Force Microscope and various cantilevers/tips. The objective of this research is to figure out the dependency of atomic-scale friction on the nanomechanical properties in sliding contact such as load, stiffness and contact materials systematically. From this work, the experimental observation of transitions in atomic-scale friction from smooth sliding to multiple stick-slips in air was first made, according to the lateral cantilever stiffness and applied normal load. The superlubricity of graphite could be verified from friction vs. load experiments. Based on the results, the relationship between the stickslip behaviors and contact stiffness was carefully discussed in this work. The results or this work indicate that the atomic-scale stick-slip behaviors can be controlled by adjusting the system stiffnesses and contact materials.

Implementation of Smart USB Memory based on Bluetooth (블루투스 기반 스마트 USB 메모리 구현)

  • Kang, Byeong-gwan;Woo, Seung-heon;Yu, Hyun-ju;Ju, Haein;Lee, Ju-won;Kang, Seong-in
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.522-524
    • /
    • 2015
  • A USB memory stick became common for secondary storage Unit.. But USB memory stick has critical problems as well. Such as personal information data leakage due to easy loss of the portable device. Therefore, User increased Repurchases of USB memory stick, and damage case of personal and company information data leakage increased. In this study, to prevent such loss and stolen, we propose Smart USB memory stick based on Bluetooth. Smart USB memory stick support the security and prevent the loss.

  • PDF