• Title/Summary/Keyword: Steroidogenic Enzymes

Search Result 25, Processing Time 0.025 seconds

Testicular Expression of Steroidogenic Enzyme Genes Is Related to a Transient Increase in Serum 19-nortestosterone during Neonatal Development in Pigs

  • Choi, Nag-Jin;Hyun, Jin Hee;Choi, Jae Min;Lee, Eun Ju;Cho, Kyung Hyun;Kim, Yunje;Chang, Jongsoo;Chung, Il Byung;Chung, Chung Soo;Choi, Inho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.12
    • /
    • pp.1832-1842
    • /
    • 2007
  • Cytochrome P450 aromatase is responsible for the biosynthesis of estrogen. It is also responsible for the endogenous production of 19-nortestosterone (nandrolone), an anabolic androgen unique to pigs. Plasma concentrations of 19-nortestosterone are highest between two and four weeks after birth in male pigs. In the present study, the physiology of 19-nortestosterone was investigated by measuring the mRNA levels of steroidogenic enzymes, estrogen receptors and androgen receptor in the tissues of growing pigs. The expression of aromatase, 17${\alpha}$-hydroxylase and 3${\beta}$-hydroxysteroid dehydrogenase in the testes of male piglets increased between birth and two weeks of age, and then decreased progressively. Similar developmental expressional patterns were observed for 17${\alpha}$-hydroxylase and 3${\beta}$-hydroxysteroid dehydrogenase in the ovaries of female piglets, but without significant aromatase expression. The major form of aromatase expressed in the testes of piglets was identified as type I. Expression of estrogen receptor-${\alpha}$ and -${\beta}$and androgen receptor genes was also detected in both testes and ovaries. A transient elevation of androgen receptor mRNA in male piglets at two weeks of age was also observed in testes. Significant expression of the androgen receptor gene, but not of estrogen receptor-${\alpha}$ and -${\beta}$ genes, was also demonstrated in adipose tissue and muscle. We conclude that the observed increase in the testicular expression of aromatase in male pigs could account for the production of large amounts of 19-nortestosterone at between two and four weeks of age in males. Androgen receptor and 19-nortestosterone appeared to be important for testicular development and might contribute to sexual dimorphism in body composition and muscle development in juvenile pigs.

Differential Activities of FOXL2 and Its Mutants on SF-1-Induced CYP19 Transcriptional Activation (SF-1을 매개한 CYP19의 전사활성에 미치는 FOXL2 야생형과 돌연변이형의 차별적 영향)

  • Park, Mi-Ra;Kim, Ah-Young;Na, Soon-Young;Kim, Hong-Man;Lee, Kang-Seok;Bae, Jee-Hyeon;Ko, Jeong-Jae
    • Development and Reproduction
    • /
    • v.14 no.2
    • /
    • pp.91-97
    • /
    • 2010
  • FOXL2 is a winged-helix/forkhead (FH) domain transcription factor, and mutations in FOXL2 gene are responsible for blepharophimosis-ptosis-epicanthus inversus syndrome (BPES). BPES is an autosomal dominant genetic disease. BPES type I patients exhibit both premature ovarian failure (POF) and eyelid malformation, while only the eyelid defect is observed in BPES type II. FOXL2-null ovaries showed a blockage of granulosa cell differentiation, suggesting that FOXL2 plays an essential role for proper ovarian folliculogenesis. Previously, we screened for FOXL2-interacting proteins and identified steroidogenic factor-1 (SF-1) which is known to be required for gonad development and transactivates steroidogenic enzymes including CYP19. In the present study, we demonstrated that FOXL2 transactivates CYP19 and stimulated the transcriptional activation of CYP19 induced by SF-1. In contrast, FOXL2 mutants found in BPES type I and II exhibited compromised abilities to enhance CYP19 induction mediated by SF-1. Thus, this study provides a functional difference between wild-type FOXL2 and its mutants which may aid to understand pathophysiology of BPES elicited by FOXL2 mutations.

Effect of 6-Hydroxydopamine (6-OHDA) on the Expression of Testicular Steroidogenic Genes in Adult Rats

  • Heo, Hyun-Jin;Ahn, Ryun-Sup;Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.14 no.3
    • /
    • pp.199-205
    • /
    • 2010
  • A neurotoxin, 6-hydroxydopamine (6-OHDA) has been widely used to create animal model for Parkinson's disease (PD). The present study was undertaken to examine whether depletion of brain dopamine (DA) stores with 6-OHDA can make alteration in the activities of the testicular steroidogenesis in adult rats. Young adult male rats (3 months old) were received a single dose of 6-OHDA (200 ${\mu}g$ in 10 ${\mu}{\ell}$/animal) by intracerebroventricular (icv) injection, and sacrificed after two weeks. The mRNA levels of steroidogenesis-related enzymes were measured by qRT-PCRs. Serum testosterone levels were measured by radioimmunoassay. Single icv infusion of 6-OHDA significantly decreased the mRNA levels of CYP11A1 (control:6-OHDA group=$1:0.68{\pm}0.14$ AU, p<0.05), CYP17 (control:6-OHDA group=$1:0.72{\pm}0.13$ AU, p<0.05). There were no changes in the mRNA levels of $3{\beta}$-HSD (control:6-OHDA group=$1:0.84{\pm}0.08$ AU) and $17{\beta}$-HSD (control: 6-OHDA group=$1:0.63{\pm}0.20$ AU), though the levels tended to be decreased in the 6-OHDA treated group. Administration of 6-OHDA decreased significantly the mRNA level of StAR when compared to the level of saline-injected control animals (control:6-OHDA group=$1:0.72{\pm}0.08$ AU, p<0.05). Treatment with single dose of 6-OHDA remarkably lowered serum testosterone levels compared to the levels of control group (control:6-OHDA group=$0.72{\pm}0.24:0.13{\pm}0.03ng/m{\ell}$, p<0.05). Taken together with our previous study, the present study demonstrated that the activities of hypothalamus-pituitary-testis hormonal axis could be negatively affected by blockade of brain DA biosynthesis, and suggested the reduced reproductive potential might be resulted in the animals. More precise information on the testicular steroidogenic activities in PD patients and PD-like animals should be required prior to the generalization of the sex steroid hormone therapy to meet the highest standards for safety and efficacy.

Effects of Xenoestrogens on Gene Expression of Cytochrome P450 Genes in in vitro Cultured Mice Spermatogenic Cells (체외배양 생쥐정소세포에서 합성에스트로겐이 P450 등위효소의 발현에 미치는 영향)

  • Lee, Ho-Joon;Kim, Myo-Kyung;Ko, Duck-Sung;Kim, Kil-Soo;Kang, Hee-Kyoo;Kim, Dong-Hoon
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.28 no.2
    • /
    • pp.131-140
    • /
    • 2001
  • Objective: To know the effects of xenoestrogen on spermatogenesis, we investigated the expression of cytochrome P450s enzymes (CYPscc, $CYP_{17{\alpha}}$, CYP19) and $3{\beta}$-HSD genes involved in steroidogenesis. Methods: Mouse testicular cells were prepared from 15-day-old ICR mice which had only pre-meiotic germ cells by enzyme digestion using collagenase and trypsin. Testicular cells were cultured in DMEM supplemented with FSH (0.1 IU/ml) and 10% FBS or medium with estrogen ($E_2$), bisphenol-A (BPA), octylphenol (OP; $10^{-9},\;10^{-7},\;10^{-6},\;10^{-5},\;10^{-4}M$, respectively) and aroclor 1254 (A1254) known as PCBs for 48 hours. The gene expression of cytochrome P450 enzymes were examined by semi-quantitive RT-PCR. The production of estrogen and testosterone was examined by RIA. Results: As results, expression of CYPscc mRNA was not significantly decreased, but $3{\beta}$-HSD and $CYP_{17{\alpha}}$. mRNA were significantly dose-dependent decreased. And production of testosterone and estrogen were not different except BPA and OP group ($10^{-5}M$). Conclusion: BPA, OP and A1254 might inhibit steroidogenesis by decreasing CYPscc, $3{\beta}$-HSD and $CYP_{17{\alpha}}$. mRNA expression in the mouse testis. These results suggest that BPA, OP and PCBs like as an endocrine disruptors inhibit the productions of steroidogenic enzymes and decrease the production of T and E by negative feedback mechanism. Therefore, these might disrupt steroidogenesis in Leydig cells of testis and would disturb testicular function and subsequently impair spermatogenesis.

  • PDF

EID-1 Interacts with Orphan Nuclear Receptor SF-1 and Represses Its Transactivation

  • Park, Yun-Yong;Park, Ki Cheol;Shong, Minho;Lee, Soon-Jung;Lee, Young-Ho;Choi, Hueng-Sik
    • Molecules and Cells
    • /
    • v.24 no.3
    • /
    • pp.372-377
    • /
    • 2007
  • The orphan nuclear receptor, SF-1, plays a pivotal role in the development and differentiation of the endocrine and reproductive systems, and also regulates the transcription of a host of genes, including those encoding several steroidogenic enzymes and gonadotropins. We found that a previously unidentified repressor, EID-1, is an SF-1-interacting protein that inhibits the transactivation of SF-1. A transient transfection assay revealed that EID-1 inhibits SF-1, but not LRH-1, $ERR{\gamma}$, or mCAR. Using the yeast two hybrid and GST pull-down assays, we determined that EID-1 interacted strongly with SF-1. In addition, it colocalized with SF-1 in mammalian cells and interacted specifically with the AF-2 domain of SF-1, competing with SRC-1 to inhibit SF-1 transactivation. EID-1 is expressed in the mouse testis, and its expression decreases during testis development. The results of the present study suggest that EID-1 can act as a repressor, regulating the function of SF-1.

Gene Targeting of the Acyl-CoA Synthetase Specific to Arachidonate

  • Kang, Man-Jong
    • Proceedings of the KSAR Conference
    • /
    • 2000.10a
    • /
    • pp.3-4
    • /
    • 2000
  • The synthesis of acyl-CoA catalyzed by acyl-CoA synthetase (ACS, EC 6.2.1.3) from fatty acid, ATP, and CoA is a crucial reaction in mammalian fatty acid metabolism. In arachidonate metabolism, acyl-CoA synthetase(ACS) plays a key role in the esterification of free arachidonate into membrane phospholipids. Following its release by the action of calcium dependent phospholipase, free arachidonate is believed to be rapidly converted to arachidonoyl-CoA and reesterified into phospholipids in order to prevent excessive synthesis of eicosanoids. In previous studies, we have characterized five ACSs (designated as ACS1-5) with different tissue distribution. ACS1, ACS2, and ACS5 are similar in structure and fatty acid preference, and completely different from ACS3 and ACS4. The latter are arachidonate-preferring enzymes closely related in structure but expressed in different tissues: ACS3 mRNA is highly expressed in the brain and the mRNA for ACS4 is expressed in steroidogenic tissues including adrenal gland, ovary, and testis. To learn more about the potential function of ACS4 in arachidonate metabolism, we have produced knock-out mice for ACS4 gene. ACS4+/- females become pregnant less frequently and produce small litters with extremely low transmission of the disrupted alleles. Striking morphological changes including extremely enlarged uterine filled with numerous proliferative cysts of various size were detected in ACS4+/- females. Furthermore, marked accumulation of prostaglandins were seen in the uterus of heterozygous females. These results indicate that ACS4 is critical for the uterine arachidonate metabolism and heterozygous disruption of its gene lead to impaired pregnancy.

  • PDF

Effect of Vitamin D3 on Biosynthesis of Estrogen in Porcine Granulosa Cells via Modulation of Steroidogenic Enzymes

  • Hong, So-Hye;Lee, Jae-Eon;An, Sung-Min;Shin, Ye Young;Hwang, Dae Youn;Yang, Seung Yun;Cho, Seong-Keun;An, Beum-Soo
    • Toxicological Research
    • /
    • v.33 no.1
    • /
    • pp.49-54
    • /
    • 2017
  • Vitamin D3 is a fat-soluble secosteroid responsible for enhancing intestinal absorption of calcium, iron, and other materials. Vitamin D3 deficiency, therefore, can cause health problems such as metabolic diseases, and bone disorder. Female sex hormones including estrogen and progesterone are biosynthesized mainly in the granulosa cells of ovary. In this study, we isolated granulosa cells from porcine ovary and cultured for the experiments. In order to examine the effect of vitamin D3 on the ovarian granulosa cells, the mRNA and protein levels of genes were analyzed by real-time PCR and Western blot assay. The production of estrogen from the granulosa cells was also measured by the ELISA assay. Genes associated with follicle growth were not significantly altered by vitamin D3. However, it increases expression of genes involved in the estrogen-biosynthesis. Further, estrogen concentrations in porcine granulosa cell-cultured media increased in response to vitamin D3. These results showed that vitamin D3 is a powerful regulator of sex steroid hormone production in porcine granulosa cells, suggesting that vitamin D deficiency may result in inappropriate sexual development of industrial animals and eventually economic loss.

cDNA Microarray Analysis of Differential Gene Expression in Boar Testes during the Prepubertal Period

  • Lee, Dong-Mok;Lee, Ki-Ho;Choi, Jin Ho;Hyun, Jin Hee;Lee, Eun Ju;Bajracharya, Prati;Lee, Yong Seok;Chang, Jongsoo;Chung, Chung Soo;Choi, Inho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.8
    • /
    • pp.1091-1101
    • /
    • 2009
  • In an attempt to understand the biochemical mechanism for the synthesis of the anabolic steroid, 19-nortestosterone, produced by prepubertal boar testes and its physiological role, normalized complementary DNA (cDNA) from boar testes was generated. DNA sequencing of 2,016 randomly selected clones yielded 794,116 base pairs of high quality nucleotide sequence. Computer-assisted assembly of the nucleotide sequence of each clone resulted in 423 contigs and 403 singletons including several genes for steroidogenic enzymes and molecules related to steroid metabolism. Analysis of gene expression pattern by use of the presently-fabricated cDNA microarray identified a number of genes that were differentially expressed during the postnatal development period in boar testes. Two genes of unknown function were identified to be highly expressed in the testis of 2-weeks-old neonatal boar. In addition, the sequencing of open reading frames of these genes revealed their homology with human alpha hemoglobin and Homo sapiens hypothetical LOC643669, transcript variant 1. Moreover, the transcripts of these genes were also detected in porcine muscle and adipocytes, in addition to Leydig cells of pigs.