Browse > Article
http://dx.doi.org/10.5487/TR.2017.33.1.049

Effect of Vitamin D3 on Biosynthesis of Estrogen in Porcine Granulosa Cells via Modulation of Steroidogenic Enzymes  

Hong, So-Hye (Department of Biomaterials Science, College of Natural Resources & Life Science, Pusan National University)
Lee, Jae-Eon (Department of Biomaterials Science, College of Natural Resources & Life Science, Pusan National University)
An, Sung-Min (Department of Biomaterials Science, College of Natural Resources & Life Science, Pusan National University)
Shin, Ye Young (Department of Biomaterials Science, College of Natural Resources & Life Science, Pusan National University)
Hwang, Dae Youn (Department of Biomaterials Science, College of Natural Resources & Life Science, Pusan National University)
Yang, Seung Yun (Department of Biomaterials Science, College of Natural Resources & Life Science, Pusan National University)
Cho, Seong-Keun (Animal Science, College of Natural Resources & Life Science, Pusan National University)
An, Beum-Soo (Department of Biomaterials Science, College of Natural Resources & Life Science, Pusan National University)
Publication Information
Toxicological Research / v.33, no.1, 2017 , pp. 49-54 More about this Journal
Abstract
Vitamin D3 is a fat-soluble secosteroid responsible for enhancing intestinal absorption of calcium, iron, and other materials. Vitamin D3 deficiency, therefore, can cause health problems such as metabolic diseases, and bone disorder. Female sex hormones including estrogen and progesterone are biosynthesized mainly in the granulosa cells of ovary. In this study, we isolated granulosa cells from porcine ovary and cultured for the experiments. In order to examine the effect of vitamin D3 on the ovarian granulosa cells, the mRNA and protein levels of genes were analyzed by real-time PCR and Western blot assay. The production of estrogen from the granulosa cells was also measured by the ELISA assay. Genes associated with follicle growth were not significantly altered by vitamin D3. However, it increases expression of genes involved in the estrogen-biosynthesis. Further, estrogen concentrations in porcine granulosa cell-cultured media increased in response to vitamin D3. These results showed that vitamin D3 is a powerful regulator of sex steroid hormone production in porcine granulosa cells, suggesting that vitamin D deficiency may result in inappropriate sexual development of industrial animals and eventually economic loss.
Keywords
Vitamin D3; Steroidogenesis; Follicle growth; Estrogen; Granulosa cell;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Pike, J.W., Meyer, M.B. and Martowicz, M.L. (2009) New techniques in transcription research extend our understanding of the molecular actions of the vitamin D hormone. IBMS BoneKEy, 6, 169-180.   DOI
2 Zhang, R. and Naughton, D.P. (2010) Vitamin D in health and disease: current perspectives. Nutr. J., 9, 65.   DOI
3 Zarnani, A.H., Shahbazi, M., Salek-Moghaddam, A., Zareie, M., Tavakoli, M., Ghasemi, J., Rezania, S., Moravej, A., Torkabadi, E., Rabbani, H. and Jeddi-Tehrani, M. (2010) Vitamin D3 receptor is expressed in the endometrium of cycling mice throughout the estrous cycle. Fertil. Steril., 93, 2738-2743.   DOI
4 Avila, E., Diaz, L., Halhali, A. and Larrea, F. (2004) Regulation of 25-hydroxyvitamin D 3 1${\alpha}$-hydroxylase, 1, 25-dihydroxyvitamin D3 24-hydroxylase and vitamin D receptor gene expression by 8-bromo cyclic AMP in cultured human syncytiotrophoblast cells. J. Steroid Biochem. Mol. Biol., 89, 115-119.
5 Irani, M. and Merhi, Z. (2014) Role of vitamin D in ovarian physiology and its implication in reproduction: a systematic review. Fertil. Steril., 102, 460-468.   DOI
6 Kotsuji, F. and Tominaga, T. (1994) The role of granulosa and theca cell interactions in ovarian structure and function. Microsc. Res. Tech., 27, 97-107.   DOI
7 Brody, S. and Wiqvist, N. (1961) Ovarian hormones and uterine growth: Effects of estradiol and progesterone on cell growth and cell division in the rat uterus. Endocrinology, 68, 971-977.   DOI
8 Okada, H. (1993) Metabolism, structure and biological activity of sex steroids. Nihon Naibunpi Gakkai Zasshi, 69, 67-79.
9 Distler, W. (1993) The role of sex steroids for genesis of breast and endometrial cancer. Gynakologe, 26, 94-99.
10 Payne, A.H. and Hales, D.B. (2004) Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones. Endocr. Rev., 25, 947-970.   DOI
11 Peluso, C., Fonseca, F.L., Rodart, I.F., Cavalcanti, V., Gastaldo, G., Christofolini, D.M., Barbosa, C.P. and Bianco, B. (2014) AMH: An ovarian reserve biomarker in assisted reproduction. Clin. Chim. Acta, 437, 175-182.   DOI
12 Hanukoglu, I. (1992) Steroidogenic enzymes: structure, function, and role in regulation of steroid hormone biosynthesis. J. Steroid Biochem. Mol. Biol., 43, 779-804.   DOI
13 Yoshiki, N. and Aso, T. (1997) The regulation mechanism of the female menstrual cycle. Nippon Rinsho, 55, 2840-2848.
14 Wojtusik, J. and Johnson, P.A. (2012) Vitamin D regulates anti-Mullerian hormone expression in granulosa cells of the hen. Biol. Reprod., 86, 91.
15 Merhi, Z., Doswell, A., Krebs, K. and Cipolla, M. (2014) Vitamin D alters genes involved in follicular development and steroidogenesis in human cumulus granulosa cells. J. Clin. Endocrinol. Metab., 99, E1137-E1145.   DOI
16 Tao, Y.X. and Segaloff, D.L. (2009) Follicle stimulating hormone receptor mutations and reproductive disorders. Prog. Mol. Biol. Transl. Sci., 89,115-131.
17 Georges, A., Auguste, A., Bessiere, L., Vanet, A., Todeschini, A.L. and Veitia, R.A. (2013) FOXL2: a central transcription factor of the ovary. J. Mol. Endocrinol., 52, R17-R33.   DOI
18 Zhu, B.T. and Conney, A.H. (1998) Functional role of estrogen metabolism in target cells: review and perspectives. Carcinogenesis, 19, 1-27.   DOI
19 Gruber, C.J., Tschugguel, W., Schneeberger, C. and Huber, J.C. (2002) Production and actions of estrogens. N. Engl. J. Med., 346, 340-352.   DOI
20 Hong S.H., Lee, J.E., Kim, H.S., Jung, Y.J., Hwang, D., Lee, J.H., Yang, S.Y., Kim, S.C., Cho, S.K. and An, B.S. (2016) Effect of vitamin D3 on production of progesterone in porcine granulosa cells by regulation of steroidogenic enzymes. J. Biomed. Res., 30, 203-208.
21 Eppig, J.J., Wigglesworth, K. and Pendola, F.L. (2002) The mammalian oocyte orchestrates the rate of ovarian follicular development. Proc. Natl. Acad. Sci. U.S.A., 99, 2890-2894.   DOI
22 Hewison, M. (2008) Vitamin D and innate immunity. Curr. Opin. Investig. Drugs, 9, 485-490.
23 Holick, M.F. (1994) McCollum Award Lecture, 1994: vitamin D--new horizons for the 21st century. Am. J. Clin. Nutr., 60, 619-630.   DOI
24 Bell, T.D., Demay, M.B. and Burnett-Bowie, S.A. (2010) The biology and pathology of vitamin D control in bone. J. Cell. Biochem., 111, 7-13.   DOI
25 Hollis, B.W. (1996) Assessment of vitamin D nutritional and hormonal status: what to measure and how to do it. Calcif. Tissue Int., 58, 4-5.   DOI
26 DeLuca, H.M., Holick, M.F., Schnoes, H.K., Suda, T. and Cousins, R.J. (1971) Isolation and identification of 1, 25-dihydroxycholecalciferol. A metabolite of vitamin D active in intestine. Biochemistry, 10, 2799-2804.   DOI
27 DeLuca, H.F. (2004) Overview of general physiologic features and functions of vitamin D. Am. J. Clin. Nutr., 80, 1689S-1696S.   DOI
28 Hart, P.H. (2012) Vitamin D supplementation, moderate sun exposure, and control of immune diseases. Discov. Med., 13, 397-404.
29 Ponsonby, A.L., McMichael, A. and van der Mei, I. (2002) Ultraviolet radiation and autoimmune disease: insights from epidemiological research. Toxicology, 181,71-78.
30 Bolland, M.J., Grey, A., Gamble, G.D. and Reid, I.R. (2014) The effect of vitamin D supplementation on skeletal, vascular, or cancer outcomes: a trial sequential meta-analysis. Lancet Diabetes Endocrinol., 2, 307-320.   DOI
31 Kang, E.J., Lee, J.E., An, S.M., Lee, J.H., Kwon, H.S., Kim, B.C., Kim, S.J., Kim, J.M., Hwang, D.Y., Jung, Y.J., Yang, S.Y., Kim, S.C. and An, B.S. (2015) The effects of vitamin D3 on lipogenesis in the liver and adipose tissue of pregnant rats. Int. J. Mol. Med., 36, 1151-1158.   DOI
32 Forman, J.P., Scott, J.B., Ng, K., Drake, B.F., Suarez, E.G., Hayden, D.L., Bennett, G.G., Chandler, P.D., Hollis, B.W., Emmons, K.M., Giovannucci, E.L., Fuchs, C.S. and Chan, A.T. (2013) Effect of vitamin D supplementation on blood pressure in blacks. Hypertension, 61, 779-785.   DOI