• 제목/요약/키워드: Steroid hormones

검색결과 218건 처리시간 0.021초

스테로이드 성호르몬이 돼지 지방전구세포의 분화에 미치는 영향 (Effects of Sex Steroid Hormones on Differentiation of Pig Preadipocytes)

  • 김혜림;이기호;최인호;정정수
    • Journal of Animal Science and Technology
    • /
    • 제49권5호
    • /
    • pp.593-598
    • /
    • 2007
  • 본 연구는 스테로이드 성호르몬 즉 에스트로겐, 테스토스테론 및 노르테스토스테론이 돼지 지방전구세포의 분화와 증식에 미치는 영향을 구명하기 위해서 수행하였다. 지방전구세포는 갓난 암퇘지의 등지방조직을 떼어내어 coll- agenase를 처리해서 분리해서 배양했다. 세포 배양중에 10-8M과 10-7M의 스테로이드 성호르몬을 처리했다. 세포배양 전기에 스테로이드 성호르몬을 처리했을 때 지방전구세포의 분화나 증식에 아무런 영향을 미치지 않았고, 세포배양 후기에 처리했을 때는 테스토스테론과 노르테스토스테론이 세포분화를 촉진시켰다.

스테로이드 성호르몬이 암, 수 돼지 지방전구세포의 증식과 분화에 미치는 영향 (Effects of Sex Steroid Hormones on Proliferation and Differentiation of Preadipocytes from Female and Male Pigs)

  • 김원영;정정수
    • Journal of Animal Science and Technology
    • /
    • 제52권1호
    • /
    • pp.17-22
    • /
    • 2010
  • 본 연구는 스테로이드 성호르몬인 에스트로겐(estrogen), 테스토스테론(testosterone) 및 노르테스토스테론(19-nortestosterone)이 암, 수 돼지 지방전구세포의 증식과 분화에 미치는 영향을 구명하기 위해서 수행하였다. 지방전구세포는 암, 수 갓 난 돼지의 등지방 조직을 떼어 내어 collagenase를 처리한 후 분리해서 $CO_2$ 배양기에서 배양했다. 세포 배양 중에 $10^{-7}M$$10^{-6}M$의 스테로이드 성호르몬을 처리했다. 먼저 지방전구세포의 증식에 미치는 영향을 보면, 암퇘지에서 분리한 지방전구세포의 증식을 높은 농도의 스테로이드 성호르몬 모두가 촉진했다. 수퇘지에서 분리한 지방전구세포의 증식은 에스트로겐과 테스토스테론만이 촉진했다. 지방세포의 분화에 미치는 작용을 보면, 세 호르몬 모두, 농도에 관계없이 암수 성별에 관계없이 지방전구세포의 분화를 촉진했다. 촉진 정도는 증식보다 분화에 더 크게 나타났다.

Relationship among Egg Productivity, Steroid Hormones (Progesterone and Estradiol) and Ovary in Korean Native Ogol Chicken

  • Kang, W.J.;Yun, J.S.;Seo, D.S.;Hong, K.C.;Ko, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제14권7호
    • /
    • pp.922-928
    • /
    • 2001
  • There exists considerable evidence that steroid hormones are involved in the regulation of ovulation rate and oviductal development in poultry. However, the effect of steroid hormones on egg productivity of Korean Native Ogol Chicken (KNOC) has yet to be studied. Therefore, this study was performed to relate the expression of steroid hormones, especially progesterone ($P_4$) and estradiol ($E_2$), with egg productivity during the laying period. Egg production and egg weight of 70 KNOC were recorded from 20 to 60wk. Blood was taken every 10 wk and serum $P_4$ and $E_2$ were measured by radioimmunoassay. Based on egg productivity and steroid hormones levels up to 60 wk, chickens were divided into two groups, high and low. Compared to the low egg production group, a significantly higher expression of $P_4$ at 30 wk was detected in the high group. Moreover, egg production in the high $P_4$ group significantly differed from that in the low group at 30 wk. On the other hand, a Significant difference (p<0.05) in $E_2$ expression was found between high and low egg weight groups at 30 wk. Although a significant difference in egg weight between two groups by $E_2$ was not detected, the high $E_2$ group showed a higher level of egg weight than the low $E_2$ group except for 25 wk. In the comparison of ovary weight and small yellow follicle number, the group with high egg productivity and steroid concentration showed greater levels than the low group. Taken together, the results indicate that $P_4$ is related to egg productivity whereas expression of $E_2$ is associated with egg weight in KNOC.

Expression of steroidogenic enzymes in human placenta according to the gestational age

  • SO‑HYE HONG;SEUNG CHUL KIM;MEE‑NA PARK;JEA SIC JEONG;SEUNG YUN YANG;YOUNG JOO LEE;OK‑NAM BAE;HOE‑SAENG YANG;SUNGBAEK SEO;KYU‑SUP LEE;BEUM‑SOO AN
    • Molecular Medicine Reports
    • /
    • 제19권5호
    • /
    • pp.3903-3911
    • /
    • 2019
  • Female sex steroid hormones, including estradiol (E2) and progesterone (P4), serve significant physiological roles in pregnancy. In particular, E2 and P4 influence placenta formation, maintain pregnancy and stimulate milk production. These hormones are produced by ovaries, adrenal glands and the placenta, of which the latter is a major endocrine organ during pregnancy. However, the mechanism of hormone production during pregnancy remains unclear. In the present study, the regulation of steroid hormones and steroidogenic enzymes was examined in human placenta according to gestational age. In human placental tissues, expression levels of steroidogenic enzymes were determined with reverse transcription-quantitative polymerase chain reaction and western blotting. The mRNA and protein expression of CYP17A1, HSD17B3 and CYP19A1, which are associated with the synthesis of dehydroepiandrosterone (DHEA) and E2, was elevated at different gestational ages in human placenta. In addition, to evaluate the correlation between serum and placental-produced hormones, steroid hormone levels, including pregnenolone (PG), DHEA, P4, testosterone (T) and E2, were examined in serum and placenta. Serum and placenta expression of DHEA and E2 increased with gestational age, whereas T and P4 were differently regulated in placenta and serum. To confirm the mechanism of steroidogenesis in vitro, placental BeWo cells were treated with E2 and P4, which are the most important hormones during pregnancy. The mRNA and protein expression of steroidogenic enzymes was significantly altered by E2 in vitro. These results demonstrated that concentration of steroid hormones was differently regulated by steroidogenic enzymes in the placenta depending on the type of the hormones, which may be critical to maintain pregnancy.

Effect of Sex Steroid Hormones on Bovine Myogenic Satellite Cell Proliferation, Differentiation and Lipid Accumulation in Myotube

  • Lee, E.J.;Bajracharya, P.;Jang, E.J.;Chang, J.S.;Lee, H.J.;Hong, S.K.;Choi, I.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제23권5호
    • /
    • pp.649-658
    • /
    • 2010
  • Myogenic satellite cells (MSCs) are adult stem cells that activate and differentiate into myotubes. These stem cells are multipotent as they transdifferentiate into adipocyte-like cells, nerve cells and osteocytes. The effects of steroid hormones ($E_2$ and testosterone) were studied as a further step toward understanding the mechanism of MSCs proliferation and differentiation. In this study, MSCs were grown continuously for 87 days, implying that there may be a group of MSCs that continue to proliferate rather than undergoing differentiation. Isolated MSCs were cultured in Dulbecco's Modified Eagle's Medium supplemented with adult male, female or castrated bovine serum to observe the effect of steroid hormones on MSC proliferation. Cell proliferation was the highest in cultures supplemented with male serum followed by female and castrated serum. The positive effect of male hormone on MSC proliferation was confirmed by the observation of testosterone-mediated increased proliferation of cells cultured in medium supplemented with castrated serum. Furthermore, steroid hormone treatment of MSCs increased lipid accumulation in myotubes. Oil-Red-O staining showed that 17${\beta}$-estradiol ($E_2$) treatment avidly increased lipid accumulation, followed by $E_2$+testosterone and testosterone alone. To our knowledge, this is the first report of lipid accumulation in myotubes due to steroids in the absence of an adipogenic environment, and the effect of steroid hormones on cell proliferation using different types of adult bovine serum, a natural hormonal system. In conclusion, we found that sex steroids affect MSCs proliferation and differentiation, and lipid accumulation in myotubes.

선천성 고혈압 쥐에서 시상하부 카테콜아민성 신경계에 미치는 난소 스테로이드 호르몬의 영향 (Effect of Ovarian Steroid Hormones on Catecholaminergic Nervous System in the Hypothalamus of SHR)

  • 김운자;고광호
    • 약학회지
    • /
    • 제35권5호
    • /
    • pp.394-400
    • /
    • 1991
  • A question whether abnormal responsiveness of hypothalamic catecholaminergic nervous system to ovarian steoid hormones in spontaneously hypertensive rats (SHR) exist was investigated. Four groups of experimental animals were prepared for SHR and normotensive Wistar rats (NW) respectively: 1) intact, 2) ovariectomized (OVX+V), 3) ovariectomized and estrogen treated (OVX+E), 4) ovariectomized and estrogen plus progesterone treated (OVX+E+P) groups. Hypothalami from experimental animals were dissected out and used for determination of .alpha.-adrenergic receptor binding characteristics and catecholamine contents. Norepinephrine(NE) content and B$_{max}$ of $\alpha_1$-adrenergic receptors in hypothalami were greater in intact SHR than in intact NW, but dopamine(DA) content was lower in SHR than in NW. Neither contents of NE and DA nor binding characteristics of $\alpha_1$-adrenergic receptors were different in OVX+V and OVX+E group from intact group of both SHR and NW. Kd and B$_{max}$ of $\alpha_1$-adrenergic receptors in OVX+E+P was lower than that in intact SHR but not in NW. DA content was lower in OVX+E+P than in intact group of SHR and NW. The result of the present study indicates that there is an abnormal responsiveness of hypothalamic catecholaminergic nervous system to ovarian steroid hormones in SHR which may be one of genetically-determined factors probably not responsible for the development of hypertension.

  • PDF

마우스 대식세포에서 스테로이드 호르몬과 세포내 $Ca^{++}$ 타우린수송체의 활성에 미치는 영향 (Effect of Steroid Hormones and Intracellular $Ca^{++}$ on Taurine Transporter Activity in Murine Macrophage Cell Line)

  • 김하원;안혜숙;이선민;이은진;현진원;박건구;박태선;김병각
    • Biomolecules & Therapeutics
    • /
    • 제9권1호
    • /
    • pp.40-45
    • /
    • 2001
  • The activity of taurine transporter is affected by various extracellular stimuli such as ion, hormone and stress. To assess effects of steroid hormones antral cyclosporin A (CsA) on the taurine transporter activity, murine monocytic RAW264.7 cell line was stimulated with dexamethasone (DM), triamcinolone (TA), cortisone (CS), hydrocortisone (HCS), prednisone (PSN), prednisolone (PSL) and methylprednisolone (MPSL) in the presence of 12-0-tetradecanoylphorbol-13-acetate(TPA). Treatment of TPA on the cell line led to significant reduction of taurine transporter activity. However, in case of stimulation of the cells with steroid hormones in the presence of TPA, all of them recovered TPA-induced reduction of the taurine transporter activity. Treatment of the cells with CsA led to significant reduction of the taurine transporter activity. Ionomycin (IM) recovered the reduced taurine transporter activity by CsA, but failed in the presence of EDTA, a calcium chelating agent. These results showed that glucocorticoid hormone recovered TPA-induced reduction of taurine transporter activity and that IM recovered CsA-induced reduction of the transporter activity by increasing intracellular free $Ca^{++}$ concentration.n.

  • PDF

The role of sex steroid hormones in the pathophysiology and treatment of sarcopenia

  • Kim, Yong Jin;Tamadon, Amin;Park, Hyun Tae;Kim, Hoon;Ku, Seung-Yup
    • Osteoporosis and Sarcopenia
    • /
    • 제2권3호
    • /
    • pp.140-155
    • /
    • 2016
  • Sex steroids influence the maintenance and growth of muscles. Decline in androgens, estrogens and progesterone by aging leads to the loss of muscular function and mass, sarcopenia. These steroid hormones can interact with different signaling pathways through their receptors. To date, sex steroid hormone receptors and their exact roles are not completely defined in skeletal and smooth muscles. Although numerous studies focused on the effects of sex steroid hormones on different types of cells, still many unexplained molecular mechanisms in both skeletal and smooth muscle cells remain to be investigated. In this paper, many different molecular mechanisms that are activated or inhibited by sex steroids and those that influence the growth, proliferation, and differentiation of skeletal and smooth muscle cells are reviewed. Also, the similarities of cellular and molecular pathways of androgens, estrogens and progesterone in both skeletal and smooth muscle cells are highlighted. The reviewed signaling pathways and participating molecules can be targeted in the future development of novel therapeutics.

Ginseng as a Complementary and Alternative Medicine for Postmenopausal Symptoms

  • Shim, Myeong-Kuk;Lee, Young-Joo
    • Journal of Ginseng Research
    • /
    • 제33권2호
    • /
    • pp.89-92
    • /
    • 2009
  • Ginseng is a popular herbal medicine that has been used for thousands of years. A number of its components have been isolated and characterized, including ginsenosides, polysaccharides, peptides, polyacetylenic alcohols, and fatty acids. The lipophilic characteristics of ginsenosides have raised the possibility of their efficacy as steroid hormones. Several in-vitro studies have reported their pharmacological function as steroid hormones, especially estrogen, but no human study to date has confirmed their efficacy as alternatives to synthetic estrogen.