• Title/Summary/Keyword: Steric Effect

Search Result 209, Processing Time 0.034 seconds

Theoretical Studies on the Progonation Equilibria of Benzoyl Derivatives

  • Kim, Wang Gi;Kim, Yong Bin;Kim, Chang Gon;Lee, Bon Su
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.4
    • /
    • pp.395-400
    • /
    • 2001
  • The effects of ortho- (R = H and CH3) and Y-substituents (Y = OCH3, CH3H and CN), which are directly attached to the carbonyl carbon, on the protonation equilibria of the para-X-substituted benzoyl derivatives, 4-X -2, 6-di-R-C6H2-C(=O)-Y, are investigated theoretically using the B3LYP method with 6-31+G* basis set. Structurally, both of the (B) and (BH+ ) forms in the species with R = H are nearly coplanar regardless of the Y-substituents implying that the steric repulsion between Y-substituent and R = H is relatively small. In the species with R = CH3 , the tortional angle (Θ) between the carbonyl moiety and aryl ring varies from zero to near right angle depending on the degree of steric repulsion between Y and R = CH3 and the resonance demand. However the reaction energies, ΔG°, for the protonation processes are more favorable for R = CH3 than for R = H due to stronger electron donating effect of R = CH3 , although the species with R = CH3 are unfavorable sterically. On the other hand, the Hammett type plots are progressively better correlated with б+ than with б values on going from Y = OCH3 to Y = CN for both species with R = H and CH3 indicating that the degree of resonance delocalization between carbonyl moiety and X-substituent is increased for a more electron accepting Y-substituent. Nevertheless the effects of R = CH3 on the magnitude of Hammett type reaction constants ( б or б+ ) are not much different from those of R = H.

Host-Guest Interactions Between Macrocycles and Methylsubstituted Anilinium Ions

  • Lee, Shim-Sung;Jung, Jong-Hwa;Chang, Duk-Jin;Lee, Bu-Yong;Kim, Si-Joong
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.6
    • /
    • pp.521-527
    • /
    • 1990
  • The binding characteristics and analytical applications of anilinium ion complexes with 18-crown-6 were studied by polarography and NMR. First, the electrochemical reduction of the 10 species of mono and dimethylsubstituted anilinium ion complexes with 18-crown-6 as host in methanol are examined. The addition of 18-crown-6 to anilinium guest solution the polarographic waves remain well defined but shifted toward more negative potentials, indicating the complex formation. The values of formation constants, log Κ for 10 species of methylsubstituted anilinium ion complexes with 18-crown-6 varies from 2.7 to 4.8 in methanol at $25^{\circ}C$. The stability order of complexes for 18-crown-6 is anilinilum > 4-methyl > 3,4-dimethyl > 3-methyl > 3,5-dimethyl > 2,4-dimethyl > 2,5-dimethyl > 2,3-dimethyl > 2-methyl > 2,6-dimethylanilinium ion. The steric hindrance shows significant effect. Second, Proton NMR was used to elucidate their interaction characteristics. From the results of so called NMR titration techniques, the behaviors of binding sites on complexation, and the stoichiometry and stability order of complex were obtained. And the later results show the satisfactory agreement with the quantitative values obtained by polarography. Finally, the individual determinations of anilinium ion mixtures were also accomplished by addition of 18-crown-6. In some mixtures of methyl or dimethylanilinium ions the reduction peaks of differential pulse method appeared into one unresolved wave attributed to the small difference of half-wave potential, ${\Delta}E_{1/2}$. In the presence of 18-crown-6, the polarographic waves were resolved into individual maxima because of the shift toward more negative direction by the difference of selectivity of anilinium ions with 18-crown-6. It may be concluded that quantitative analysis of methylanilinium ion mixture make possible because the half-wave potential shift by the selectivity difference due to the steric hindrance between methyl group and 18-crown-6 on complexation.

Effects of Steric Hindrance of 2-Hydroxyphenyl Diazonium Derivatives in the Reductive Reaction by Using Sodium Hydrogensulfite (Sodium Hydrogensulfite를 이용한 환원반응에서 2-Hydroxyphenyl Diazonium 유도체의 입체장애에 관한 연구)

  • Kwon, O-Zoon;Kim, Jieun;Park, Se-Min;Kim, Keun-Sik;Yoon, Soon-Do
    • Applied Chemistry for Engineering
    • /
    • v.30 no.4
    • /
    • pp.509-511
    • /
    • 2019
  • Hydrazine derivatives used in fine chemicals, pharmaceuticals and cosmetics can be synthesized by reduction reaction from diazonium derivatives. The reduction method using $SnCl_2$ facilitates the reaction conversion, but the use of $SnCl_2$ is limited when residual heavy metals are issued in the final product. For the conversion of protected (2-hydroxyphenyl)diazonium derivatives into its hydrazine derivatives in Ramalin preparation process, the reduction method was developed by using $NaHSO_3$. In this study, the effect of steric hindrance according to the protected 2-hydroxygroupinphenyldiazonium derivatives was found, and linear C1~C5 alkyl groups for the hydroxy protection were preferable during the diazonium reduction reaction. Considering the economical efficiency and industrial production for the preparation of Ramalin, a variety of protecting groups were investigated. As a result, 2-(allyloxyphenyl)hydrazine was obtained with 85% yield and 99.7% purity when the hydroxy protecting group was used as an allyl group that could be easily deprotected.

A Study on the Reactions of Diamines with 2,5-Dimethoxytetrahydrofuran and 1,3-Acetonedicarboxylic Acid (1,3-Acetonedicarboxylic acid와 2,5-dimethoxytetrahydrofuran에 의한 diamine들의 반응에 관한 연구)

  • Jung Dai-Il;Song Ju-Hyun;Lee Do-Hun;Lee Yong-Gyun;Choi Soon-Kyu;Park Yu-Mi;Hahn Jung-Tai
    • Journal of Life Science
    • /
    • v.16 no.2 s.75
    • /
    • pp.206-212
    • /
    • 2006
  • In order to synthesize novel anticonvulsants, we researched that the reactions of diamines with 2,5-dimethoxytetrahydrofuran and 1,3-acetonedicarboxylic acid. The reaction of ethylenediamine with 2,5-dimethoxytetrahydrofuran and 1,3-acetonedicarboxylic acid afforded 8-(2-pyrrol-1-yl-ethyl)-8-aza-bicyclo[3,2,1]octan-3-one (yield; 5.0%) and 1,2-di-(8-aza-bicyclo[3,2,1]octan3-onyl)ethane (yield; 17.0%). In case of 1,3-diaminopropane, 8-(3-pyrrol-1-yl-propyl)-8-aza-bicyclo[3,2,1]octan-3-one(yield; 6.0%) and 1,3-di-(8-aza-bicyclo[3,2,1]octan-3-onyl)propane (yield; 21.0%) were obtained. In case of 1,8-diaminooctane, 8-(8-pyrrol-1-yl-octyl)-8-aza-bicyclo-[3,2,1]octan-3-one (yield; 2.6 %) and 1,8-di-(8-aza-bicyclo[3,2,1]octan-3-onyl)octane (yield; 24.9%) were obtained. In diaminobenzene reactions, synthetic yields of 8-aza-bicyclo-[3,2,1]octan-3-one derivatives were higher than those of pyrrole derivatives because re actions were done under room temperature. The longer the carbon chain of diaminoalkane is, the more reactive N atom is due to more electron donating effect, and the less steric hindrance around the carbon gave the higher chemical yields. The reaction of p-phenylenediamine as a diaminobenzene with 2,5-dimethoxyte-trahydrofuran and 1,3-acetonedicarboxylic acid produced p-dipyrrolylbenzene (yield; 4.0%), 8-(4-pyrrol-1-yl-phenyl)-8-aza-bicyclo[3,2,1]octan-3-one (yield; 12.0%), and 1,4-di-(8-aza-bicyclo[3,2,1]octan-3-onyl)benzene (yield; 59.0%). In case of m-phenylenediamine, 8-(3-pyrrol-1-yl-phenyl)-8-aza-bicyclo[3,2,1]octan-3-one(yield; 2.0%) and 1,3-di-(8-aza-bicyclo[3,2,1]octan-3-onyl)benzene (yield ; 28.0%) were obtained. But, synthesis of 1,2-di-(8-aza-bicyclo[3,2,l]octan-3-onyl)benzene by treatment of o-phenylenediamine was not successful, presumably due to the steric hindrance of 8-aza-bicyclo-[3,2,1]octan-3-one rings.

Synthesis and quantitative structure-activity relationships(QSAR) analysis of 1-(phenoxymethyl) benzotriazole derivatives as new fungicide (새로운 항균제(抗菌劑)로서 1-(phenoxymethyl)benzotriazole 유도체(誘導體)의 합성(合成)과 정량적(定量的) 구조활성관계(構造活性關係)(QSAR) 분석(分析))

  • Sung, Nack-Do;Lim, Chi-Hwan;Choi, Woo-Young;Ko, Thoug-Sung;Kwon, Ki-Sung
    • Applied Biological Chemistry
    • /
    • v.33 no.3
    • /
    • pp.231-238
    • /
    • 1990
  • The structure-antifungal activity correlations between the structure of fourteen new 1-(phenoxymethyl)benzotriazoles (I) (Y=0), 1-(thiophenoxymethyl)benzotriazoles (ll) (Y=S) and 1-(azidomethyl)benzotriazole (III) derivatives were synthesized, and their activity, fifty percent inhibition of mycelial growth($pI_{50}$), in vitro against Pyricularia oryzae, Fusarium axysporum f.sp sesami, Valsa ceratosperma and Botrytis cinerea were investigated using a generalized QSAR method. The activity of (I) was superior In those of (II) and (III). The effect of the substituents (X) on the phenoxy group (I) was rationalized by a parabolic function of electronic (${\sigma}$), steric ($B_1$) and hydrophobic parameter(${\pi}$), and hydrogen bonding (HB). Where the optimal values of substituent on the fungicidal activity againt P. oryzae and F. axysporum f.sp.sesami are $B_1=1.40A;(H)$ and ${\pi}=0.07{\sim}0.15;(H)$, and those of substituent on the fungicidal activity against V. ceratosperma and B. cinerea are ${\sigma}=0.23{\sim}0.28;\;(C1),\;{\pi}=0.70;$ (C1), respectively. The most effective compound ( I a) and ( I d) were examined in this study.

  • PDF

The Thermodynamics of the Formation of Pyridines-Iodine Charge Transfer Complexes (피리딘류와 요오드사이의 전하이동착물생성에 관한 열역학적 연구)

  • Oh Cheun Kwun;Jin Burm Kyong;Myong Kyun Kim
    • Journal of the Korean Chemical Society
    • /
    • v.25 no.4
    • /
    • pp.228-235
    • /
    • 1981
  • Ultraviolet spectrophotometric investigation were carried out on the systems of pyridine, ${\beta}$-picoline and 3,5-lutidine with iodine in carbon tetrachloride. The results reveal the formation of one to one molecular complexes of the type, $C_5H_5N{\cdot}I_2$, ${\beta}-C_5H_4(CH_3)N{\cdot}I_2$ and 3,5-$C_5H_3(CH_3)_2N{\cdot}I_2$. The equrilibrium constants of complexes were obtained in consideration of that absorption maxima have the blue shift with the increasing temperatures according to the formation of the charge transfer complexes. The thermodynamic parameters, ${\Delta}H$, ${\Delta}G$ and ${\Delta}S$ for the formation of the charge transfer complexes were calculated from these values. These results indicated that the relative stabilities of the pyridine, ${\beta}$-picoline and 3,5-lutidine complexes with iodine increase in the order, pyridine < ${\beta}$-picoline < 3,5-lutidine. These results were supposed to be the influence resulted from increase of electron density by the positive inductive effect and the dipole moment of the steric hindrance effect. And this results were compared and discussed with polymethylbenzene-iodine CT-complexes.

  • PDF

Dephosphorylation of Isopropyl phenyl-4-nitrophenylphosphinate (IPNPIN) onto 2-Alkylbenzimidazolide Anion in CTABr Micellar Solution (CTABr 미셀 용액속에서 2-Alkylbenzimidazole 음이온에 의해 추진되는 Isopropyl phenyl-4-nitrophenyl phosphinate(IPNPIN)의 탈인산화반응)

  • Kim, Jeung-Bea
    • Journal of Environmental Science International
    • /
    • v.21 no.5
    • /
    • pp.585-596
    • /
    • 2012
  • This study is mainly focused on micellar effect of cetyltrimethyl ammonium bromide(CTABr) solution including alkylbenzimidazole(R-BI) on dephosphorylation of isopropyl-4-nitrophenylphosphinate(IPNPIN) in carbonate buffer(pH 10.7). The reactions of IPNPIN with R-$BI^{\ominus}$ are strongly catalyzed by the micelles of CTABr. Dephosphorylation of IPNPIN is accelerated by $BI^{\ominus}$ ion in $10^{-2}$ M carbonate buffer(pH 10.7) of $4{\times}10^{-3}$ M CTABr solution up to 89 times as compared with the reaction in carbonate buffer by no benzimidazole(BI) solution of $4{\times}10^{-3}$ M CTABr. The value of pseudo first order rate constant($k_{\Psi}$) of the reaction in CTABr solution reached a maximum rate constant increasing micelle concentration. Such rate maxima are typical of micellar catalyzed bimolecular reactions. The reaction mediated by R-$BI^{\ominus}$ in micellar solutions are obviously slower than those by $BI^{\ominus}$, and the reaction rate were decreased with increase of lengths of alkyl groups. It seems due to steric effect of alkyl groups of R-$BI^{\ominus}$ in Stern layer of micellar solution. The surfactant reagent, CTABr, strongly catalyzes the reaction of IPNPIN with R-BI and its anion(R-$BI^{\ominus}$) in carbonate buffer(pH 10.7). For example, $4{\times}10^{-3}$ M CTABr in $1{\times}10^{-4}$ M BI solution increase the rate constant($k_{\Psi}=98.5{\times}10^{-3}\;sec^{-1}$) of the dephosphorylation by a factor ca.25, when compared with reaction($k_{\Psi}=3.9{\times}10^{-4}\;sec^{-1}$) in $1{\times}10^{-4}$ M BI solution(without CTABr). And no CTABr solution, in $1{\times}10^{-4}$ M BI solution increase the rate constant($k_{\Psi}=3.9{\times}10^{-4}\;sec^{-1}$) of the dephosphorylation by a factor ca.39, when compared with reaction ($k_{\Psi}=1.0{\times}10^{-5}\;sec^{-1}$) in water solution(without BI). This predicts that the reactivities of R-$BI^{\ominus}$ in the micellar pseudophase are much smaller than that of $BI^{\ominus}$. Due to the hydrophobicity and steric effect of alkyl group substituents, these groups would penetrate into the core of the micelle for stabilization by van der Waals interaction with long alkyl groups of CTABr.

Factors Influencing S-O Bond and C-O Bond Cleavages in the Reactions of 2,4-Dinitrophenyl X-Substituted Benzenesulfonates with Various Nucleophilic Reagents

  • 엄익환;김정주;김명진;권동숙
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.4
    • /
    • pp.353-357
    • /
    • 1996
  • Second-order rate constants have been measured spectrophotometrically for the reaction of 2,4-dinitrophenyl X-substituted benzenesulfonates with Z-substituted phenoxides in absolute ethanol at 25.0±0.1 ℃. The nucleophilic substitution reaction gives both S-O bond and C-O bond cleavage products. The extent of S-O bond cleavage increases significantly with increasing electron withdrawing ability of the sulfonyl substitutent X, while that of the C-O bond cleavage is independent on the electronic effect of the substituent. On the contratry, the effect of the substituent Z in the nucleophilic phenoxide is more significant for the C-O bond cleavage than for the S-O bond cleavage. Aminolyses of 2,4-dinitrophenyl benzenesulfonate (1) with various 1°, 2° and 3°amines have revealed that steric effect is little important. The extent of S-O bond cleavage increases with increasing the basicity of the amines, but decreases with increasing the basicity of the nucleophilic aryloxides, indicating that the HSAB principle is not always operative. Besides, reactant and solvent polarizability effect has also been found to be an important factor in some cases but not always to influence the reaction site.

The effect of divalent and trivalent cations on aggregation and surface hydrophobicity of selected microorganism

  • Alias, M. Anwar;Muda, Khalida;Affam, Augustine Chioma;Aris, Azmi;Hashim, Normala
    • Environmental Engineering Research
    • /
    • v.22 no.1
    • /
    • pp.61-74
    • /
    • 2017
  • This study investigated the effect of various cations ($Ca^{2+}$, $Mg^{2+}$, $Al^{3+}$, $Mn^{2+}$, $Zn^{2+}$) on the autoaggregation (AAg) and surface hydrophobicity (SHb) of three different bacteria (Brevibacillus panacihumi strain (ZB1), Lysinibacillus fusiformis strain (ZB2) and Enterococcus faecalis strain (ZL)) using a 2-level factorial design. The AAg ratio was measured from the changes in the absorbance of the media. Results show that ZB2 had maximum AAg for the three bacteria investigated. A microscopic clustering of cells was observed when $Ca^{2+}$ was added to ZB2. The AAg was in the range of 62%, 58% and 34% for ZB2, ZB1 and ZL, respectively and correlated to the SHb. The aggregation and SHb of the microbial cells increased with increasing ionic strength due to the repulsive steric or overlap forces between the polymer covered surfaces. $Ca^{2+}$ demonstrated a more significant effect on aggregation and SHb of microbial cells due to an attractive binding force.

Formation of Pyro-products by the Pyrolysis of Monobromophenols

  • Na, Yun-Cheol;Seo, Jung-Ju;Hong, Jong-Ki
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.9
    • /
    • pp.1276-1280
    • /
    • 2003
  • Thermal behavior of bromphenols was investigated by direct pyrolysis at high temperature. The thermal degradation products formed by the pyrolysis of mono-bromophenols (o-, m-, and p-) were identified by gas chromatography-mass spectrometry. During the pyrolysis reactions, several kinds of dioxins and furans were produced, and the relative ratio of pyro-products was dependent on the substituted position of bromine in phenolic structure due to the effect of symmetry and steric hindrance. The formation of dioxins can be explained by the phenoxy radical addition and Br atom elimination at an ortho-carbon site on phenolic structure. On the other hand, the formation of furans can be explained by the ortho-ortho carbon coupling of phenoxy radicals at unsubstituted sites to form o, o'-dihydroxydiphenyl intermediate via its keto-tautomer, followed by $H_2O$ elimination. The pyrolysis temperature has also a substantial effect on the dimerized products quantities but little effect on the type of pyro-products. Moreover, the formation mechanism of pyro-products was suggested on the basis of products identified.