• 제목/요약/키워드: Stereotactic

Search Result 408, Processing Time 0.022 seconds

Dosimetric Verifications of the Output Factors in the Small Field Less Than $3cm^2$ Using the Gafchromic EBT2 Films and the Various Detectors (Gafchromic EBT2필름과 다양한 검출기를 이용하여 $3cm^2$ 이하의 소조사면에서 출력비율의 선량검증)

  • Oh, Se An;Yea, Ji Woon;Lee, Rena;Park, Heon Bo;Kim, Sung Kyu
    • Progress in Medical Physics
    • /
    • v.25 no.4
    • /
    • pp.218-224
    • /
    • 2014
  • The small field dosimetry is very important in modern radiotherapy because it has been frequently used to treat the tumor with high dose hypo-fractionated radiotherapy or high dose single fraction stereotactic radiosurgery (SRS) with small size target. But, the dosimetry of a small field (< $3{\times}3cm^2$) has been great challenges in radiotherapy. Small field dosimetry is difficult because of (a) a lack of lateral electronic equilibrium, (b) steep dose gradients, and (c) partial blocking of the source. The objectives of this study were to measure and verify with the various detectors the output factors in a small field (<3 cm) for the 6 MV photon beams. Output factors were measured using the CC13, CC01, EDGE detector, thermoluminescence dosimeters (TLDs), and Gafchromic EBT2 films at the sizes of field such as $0.5{\times}0.5$, $1{\times}1$, $2{\times}2$, $3{\times}3$, $5{\times}5$, and $10{\times}10cm^2$. The differences in the output factors with the various detectors increased with decreasing field size. Our study demonstrates that the dosimetry for a small photon beam (< $3{\times}3cm^2$) should use CC01 or EDGE detectors with a small active volume. And also, Output factors with the EDGE detectors in a small field (< $3{\times}3cm^2$) coincided well with the Gafchromic EBT2 films.

The variability of 6-D Skull Tracking(6DST) in Cyberknife for Bone metastasis patients (사이버나이프 6-D Skull Tracking의 유용성 평가)

  • Lee, Geon Ho;Bae, Sun Myeong;Song, Heung Kwon;Baek, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.30 no.1_2
    • /
    • pp.41-47
    • /
    • 2018
  • Purpose : The purpose of this study is to evaluate the usefulness of 6 Dimensional Skull Tracking(6DST) in Cyberknife Stereotactic Body Radiation Therapy(SBRT) for the first and second cervical vertebrae(C1 and C2) metastasis. Methode and material : The Computed Tomography (Lightspeed VCT 64, General Electric Co. Waukesha, WI, USA) was used to acquire the CT images of the 9 patients with cervical vertebrae(C1 and C2) metastasis. Treatment plans for Xsight spine tracking and 6 Dimensional skull tracking were established with planning system (Multiplan system Version 4.6, Accuray, US). The results of XST and 6DST for each patient were analyzed with Microsoft Excel 2010. Result : The Maximum offsets of XST for C1 were 0.9 mm in Y(supero-inferior), 0.9 mm in Z(antero-posterior), 0.7 mm in X(left-right) direction, and rotations were and 1.0 degrees roll, 1.0 degrees pitch and 1.2 degrees yaw. The Maximum offsets of 6DST for C1 were 0.7 mm, 0.7 mm, 0.9 mm and $1.0^{\circ}$, $1.0^{\circ}$, $1.2^{\circ}$ for Y, Z, X and Roll, Pitch, Yaw. The Maximum offsets of XST and 6DST for C2 were 0.7 mm, 0.7 mm, 0.8 mm and $0.9^{\circ}$, $1.0^{\circ}$, $1.8^{\circ}$, and 0.9 mm, 0.7 mm, 0.9 mm and $0.9^{\circ}$, $0.9^{\circ}$, $1.0^{\circ}$ for Y, Z, X and Roll, Pitch, Yaw, respectively. Conclusion : XST and 6DST showed identical results for translations and rotations within the tolerance. It is possible to simplify the treatment time and procedure by using the 6DST. Therefore, 6DST is very useful methode with XST among the various tracking methods in Cyberknife for the patients with C1, C2 vertebral metastasis.

  • PDF

An investigation Of IntraFraction Motion Correction For Lung Stereotactic Body Radiation Therapy By Using IntraFraction Cone Beam Computed Tomography (폐암 환자의 정위적 체부 방사선 치료 시 IntraFraction CBCT를 이용한 치료 중 자세 오차 교정에 대한 고찰)

  • Song, Hyeong Seok;Cho, Kang Chul;Park, Hyo Kuk;Yoon, Jong Won;Cho, Jung Hee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.31 no.1
    • /
    • pp.67-74
    • /
    • 2019
  • Purpose: The purpose is to correct for position errors caused by long treatment times. By correcting the target motion that can occur during lung SBRT using IntraFraction CBCT. Methods and materials: We analyzed retrospectively the IFM data of 14 patients with two treatment arc in the treatment plan for lung cancer with stereotactic radiotherapy. An IntraFraction Motion was applied to the Arccheck phantom to acquire the Gamma index data. Results : IntraFraction Motion during the first treatment arc is in the left-right(LR), superiorinferior(SI), anterior-posterior(AP) directions were $0.16{\pm}0.05cm$, 0.72 cm(max error), $0.2{\pm}0.14cm$, 1.26 cm, $0.24{\pm}0.08cm$, 0.82 cm and rotational directions was $0.84{\pm}0.23^{\circ}$, $2.8^{\circ}$(pitch), $0.72{\pm}0.23^{\circ}$, $2.5^{\circ}$(yaw), $0.7{\pm}0.19^{\circ}$, $2^{\circ}$(roll). IntraFraction Motion during the second treatment arc is in the LR, SI, AP directions were $0.1{\pm}0.04cm$, 0.37 cm, $0.14{\pm}0.17cm$, 2 cm, $0.12{\pm}0.04cm$, 0.5 cm and rotational directions was $0.45{\pm}0.12^{\circ}$, $1.3^{\circ}$, $0.37{\pm}0.1^{\circ}$, $1^{\circ}$, $0.35{\pm}0.1^{\circ}$, $1.2^{\circ}$. Gamma index pass rates were $82.64{\pm}10.51%$, 48.4 %. Conclusions : In this study, we examined the validity of IntraFraction Motion correction in lung SBRT and the efficiency of IntraFraction CBCT. Due to the nature of SBRT treatment, IFM may increase due to the increased treatment time. It is believed that the increase in IFM with the increase in treatment time can be improved with the use of FFF Beam and additional position correction using CBCT during treatment.

Evaluation of the usefulness of IGRT(Image Guided Radiation Therapy) for markerless patients using SGPS(Surface-Guided Patient Setup) (표면유도환자셋업(Surface-Guided Patient Setup, SGPS)을 활용한 Markerless환자의 영상유도방사선치료(Image Guided Radiation Therapy, IGRT)시 유용성 평가)

  • Lee, Kyeong-jae;Lee, Eung-man;Lee, Jeong-su;Kim, Da-yeon;Ko, Hyeon-jun;Choi, Shin-cheol
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.33
    • /
    • pp.109-116
    • /
    • 2021
  • Purpose: The purpose of this study is to evaluate the usefulness of Surface-Guided Patient Setup by comparing the patient positioning accuracy when image-guided radiation therapy was used for Markerless patients(unmarked on the skin) using Surface-Guided Patient Setup and Marker patients(marked on the skin) using Laser-Based Patient Setup. Materials And Methods: The position error during IGRT was compared between a Markerless patient initially set up with SGPS using an optical surface scanning system using three cameras and a Marker patient initially set up with LBPS that aligns the laser with the marker drawn on the patient's skin. Both SGPS and LBPS were performed on 20 prostate cancer patients and 10 Stereotactic Radiation Surgery patients, respectively, and SGPS was performed on an additional 60 breast cancer patients. All were performed IGRT using CBCT or OBI. Position error of 6 degrees of freedom was obtained using Auto-Matching System, and comparison and analysis were performed using Offline-Review in the treatment planning system. Result: The difference between the root mean square (RMS) of SGPS and LBPS in prostate cancer patients was Vrt -0.02cm, Log -0.02cm, Lat 0.01cm, Pit -0.01°, Rol -0.01°, Rtn -0.01°, SRS patients was Vrt 0.02cm, Log -0.05cm, Lat 0.00cm, Pit -0.30°, Rol -0.15°, Rtn -0.33°. there was no significant difference between the two regions. According to the IGRT standard of breast cancer patients, RMS was Vrt 0.26, Log 0.21, Lat 0.15, Pit 0.81, Rol 0.49, Rtn 0.59. Conclusion:. As a result of this study, the position error value of SGPS compared to LBPS did not show a significant difference between prostate cancer patients and SRS patients. In the case of additionally performed SGPS breast cancer patients, the position error value was not large based on IGRT. Therefore, it is considered that it will be useful to replace LBPS with SGPS, which has the great advantage of not requiring patient skin marking..

Comparison and evaluation of treatment plans using Abdominal compression and Continuous Positive Air Pressure for lung cancer SABR (폐암의 SABR(Stereotactic Ablative Radiotherapy)시 복부압박(Abdominal compression)과 CPAP(Continuous Positive Air Pressure)를 이용한 치료계획의 비교 및 평가)

  • Kim, Dae Ho;Son, Sang Jun;Mun, Jun Ki;Park, Jang Pil;Lee, Je Hee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.33
    • /
    • pp.35-46
    • /
    • 2021
  • Purpose : By comparing and analyzing treatment plans using abdominal compression and The Continuous Positive Air Pressure(CPAP) during SABR of lung cancer, we try to contribute to the improvement of radiotherapy effect. Materials & Methods : In two of the lung SABR patients(A, B patient), we developed a SABR plan using abdominal compression device(the Body Pro-Lok, BPL) and CPAP and analyze the treatment plan through homogeneity, conformity and the parameters proposed in RTOG 0813. Furthermore, for each phase, the X, Y, and Z axis movements centered on PTV are analyzed in all 4D CTs and compared by obtaining the volume and average dose of PTV and OAR. Four cone beam computed tomography(CBCT) were used to measure the directions from the center of the PTV to the intrathoracic contacts in three directions out of 0°, 90°, 180° and 270°, and compare the differences from the average distance values in each direction. Result : Both treatment plans obtained using BPL and CPAP followed recommendations from RTOG, and there was no significant difference in homogeneity and conformity. The X-axis, Y-axis, and Z-axis movements centered on PTV in patient A were 0.49 cm, 0.37 cm, 1.66 cm with BPL and 0.16 cm, 0.12 cm, and 0.19 cm with CPAP, in patient B were 0.22 cm, 0.18 cm, 1.03 cm with BPL and 0.14 cm, 0.11 cm, and 0.4 cm with CPAP. In A patient, when using CPAP compared to BPL, ITV decreased by 46.27% and left lung volume increased by 41.94%, and average dose decreased by 52.81% in the heart. In B patient, volume increased by 106.89% in the left lung and 87.32% in the right lung, with an average dose decreased by 44.30% in the stomach. The maximum difference of A patient between the straight distance value and the mean distance value in each direction was 0.05 cm in the a-direction, 0.05 cm in the b-direction, and 0.41 cm in the c-direction. In B patient, there was a difference of 0.19 cm in the d-direction, 0.49 cm in the e-direction, and 0.06 cm in the f-direction. Conclusion : We confirm that increased lung volume with CPAP can reduce doses of OAR near the target more effectively than with BPL, and also contribute more effectively to restriction of tumor movement with respiration. It is considered that radiation therapy effects can be improved through the application of various sites of CPAP and the combination with CPAP and other treatment machines.

Image quality and usefulness evaluaton of 3D-CBCT and Gated-CBCT according to baseline changes for SBRT of Lung Cancer (폐암 환자의 정위체부방사선치료 시 기준선 변화에 따른 3D-CBCT(Cone Beam Computed-Tomography)와 Gated-CBCT의 영상 품질 및 유용성 평가)

  • Han Kuk Hee;Shin Chung Hun;Lee Chung Hwan;Yoo Soon Mi;Park Ja Ram;Kim Jin Su;Yun In Ha
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.35
    • /
    • pp.41-51
    • /
    • 2023
  • Purpose: This study compares and analyzes the image quality of 3D-CBCT(Cone Beam Computed-Tomography) and Gated CBCT according to baseline changes during SBRT(Stereotactic Body RadioTherapy) in lung cancer patients to find a useful CBCT method for correcting movement due to breathing Materials and methods : Insert a solid tumor material with a diameter of 3 cm into the QUASARTM phantom. 4-Dimentional Computed-Tomography(4DCT) images were taken with a speed of the phantom at period 3 sec and a maximum amplitude of 20 mm. Using the contouring menu of the computerized treatment planning system EclipseTM Gross Tumor Volume was outlined on solid tumor material. Set-up the same as when acquiring a 4DCT image using Truebeam STxTM, breathing patterns with baseline changes of 1 mm, 3 mm, and 5 mm were input into the phantom to obtain 3D-CBCT (Spotlight, Full) and Gated-CBCT (Spotlight, Full) images five times repeatedly. The acquired images were compared with the Signal-to-Noise Ratio(SNR), Contrast-to-Noise Ratio(CNR), Tumor Volume Length, and Motion Blurring Ratio(MBR) based on the 4DCT image. Results: The average Signal-to-Noise Ratio, Contrast-to-Noise Ratio, Tumor Volume Length and Motion Blurring Ratio of Spotlight Gated CBCT images were 13.30±0.10%, 7.78±0.16%, 3.55±0.17%, 1.18±0.06%. As a result, Spotlight Gated-CBCT images according to baseline change showed better values than Spotligtht 3D-CBCT images. Also, the average Signal-to-Noise Ratio, Contrast-to-Noise Ratio, Tumor Volume Length and Motion Blurring Ratio of Full Gated CBCT images were 12.80±0.11%, 7.60±0.11%, 3.54±0.16%, 1.18±0.05%. As a result Full GatedCBCT images according to baseline change showed better values than Full 3D-CBCT images. Conclusion : Compared to 3D-CBCT images, Gated-CBCT images had better image quality according to the baseline change, and the effect of Motion Blurring Artifacts caused by breathing was small. Therefore, it is considered useful to image guided using Gated-CBCT when a baseline change occurs due to difficulty in regular breathing during SBRT that exposes high doses in a short period of time

  • PDF

Usefulness of Abdominal Compressor Using Stereotactic Body Radiotherapy with Hepatocellular Carcinoma Patients (토모테라피를 이용한 간암환자의 정위적 방사선치료시 복부압박장치의 유용성 평가)

  • Woo, Joong-Yeol;Kim, Joo-Ho;Kim, Joon-Won;Baek, Jong-Geal;Park, Kwang-Soon;Lee, Jong-Min;Son, Dong-Min;Lee, Sang-Kyoo;Jeon, Byeong-Chul;Cho, Jeong-Hee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.2
    • /
    • pp.157-165
    • /
    • 2012
  • Purpose: We evaluated usefulness of abdominal compressor for stereotactic body radiotherapy (SBRT) with unresectable hepatocellular carcinoma (HCC) patients and hepato-biliary cancer and metastatic liver cancer patients. Materials and Methods: From November 2011 to March 2012, we selected HCC patients who gained reduction of diaphragm movement >1 cm through abdominal compressor (diaphragm control, elekta, sweden) for HT (Hi-Art Tomotherapy, USA). We got planning computed tomography (CT) images and 4 dimensional (4D) images through 4D CT (somatom sensation, siemens, germany). The gross tumor volume (GTV) included a gross tumor and margins considering tumor movement. The planning target volume (PTV) included a 5 to 7 mm safety margin around GTV. We classified patients into two groups according to distance between tumor and organs at risk (OAR, stomach, duodenum, bowel). Patients with the distance more than 1 cm are classified as the 1st group and they received SBRT of 4 or 5 fractions. Patients with the distance less than 1 cm are classified as the 2nd group and they received tomotherapy of 20 fractions. Megavoltage computed tomography (MVCT) were performed 4 or 10 fractions. When we verify a MVCT fusion considering priority to liver than bone-technique. We sent MVCT images to Mim_vista (Mimsoftware, ver .5.4. USA) and we re-delineated stomach, duodenum and bowel to bowel_organ and delineated liver. First, we analyzed MVCT images to check the setup variation. Second we compared dose difference between tumor and OAR based on adaptive dose through adaptive planning station and Mim_vista. Results: Average setup variation from MVCT was $-0.66{\pm}1.53$ mm (left-right) $0.39{\pm}4.17$ mm (superior-inferior), $0.71{\pm}1.74$ mm (anterior-posterior), $-0.18{\pm}0.30$ degrees (roll). 1st group ($d{\geq}1$) and 2nd group (d<1) were similar to setup variation. 1st group ($d{\geq}1$) of $V_{diff3%}$ (volume of 3% difference of dose) of GTV through adaptive planing station was $0.78{\pm}0.05%$, PTV was $9.97{\pm}3.62%$, $V_{diff5%}$ was GTV 0.0%, PTV was $2.9{\pm}0.95%$, maximum dose difference rate of bowel_organ was $-6.85{\pm}1.11%$. 2nd Group (d<1) GTV of $V_{diff3%}$ was $1.62{\pm}0.55%$, PTV was $8.61{\pm}2.01%$, $V_{diff5%}$ of GTV was 0.0%, PTV was $5.33{\pm}2.32%$, maximum dose difference rate of bowel_organ was $28.33{\pm}24.41%$. Conclusion: Despite we saw diaphragm movement more than 5 mm with flouroscopy after use an abdominal compressor, average setup_variation from MVCT was less than 5 mm. Therefore, we could estimate the range of setup_error within a 5 mm. Target's dose difference rate of 1st group ($d{\geq}1$) and 2nd group (d<1) were similar, while 1st group ($d{\geq}1$) and 2nd group (d<1)'s bowel_organ's maximum dose difference rate's maximum difference was more than 35%, 1st group ($d{\geq}1$)'s bowel_organ's maximum dose difference rate was smaller than 2nd group (d<1). When applicating SBRT to HCC, abdominal compressor is useful to control diaphragm movement in selected patients with more than 1 cm bowel_organ distance.

  • PDF

LINAC-based Stereotactic Radiosurgery for Meningiomas (수막종에 대한 선형가속기형 정위방사선수술)

  • Shin Seong Soo;Kim Dae Yong;Ahn Yong Chan;Lee Jung Il;Nam Do-Hyun;Lim Do Hoon;Huh Seung Jae;Yeo Inhwan J;Shin Hyung Jin;Park Kwan;Kim BoKyoung;Kim Jong Hyun
    • Radiation Oncology Journal
    • /
    • v.19 no.2
    • /
    • pp.87-94
    • /
    • 2001
  • Purpose : To evaluate the role of LINAC-based stereotactic radiosurgery (SRS) in the management of meningiomas, we reviewed clinical response, image response, neurological deficits for patients treated at our institution. Methods and materials : Between February 1995 and December 1999, twenty-six patients were treated with SRS. Seven patients had undergone prior resection. Nineteen patients received SRS as the initial treatment. There were 7 male and 19 female patients. The median age was 51 years (range, $14\~67\;years$). At least one clinical symptom presented at the time of SRS in 17 patients and cranial neuropathy was seen in 7 patients. The median tumor volume was $4.7\;cm^3\;(range,\;0.7\~16.5\;m^3)$. The mean marginal dose was 15 Gy (range, $10\~20\;Gy$), delivered to the $80\%$ isodose surface (range, $46\~90\%$). The median clinical and imaging follow-up periods were 27 months (range, 1-71 months) and 25 months (range, $1\~52\;months$), respectively. Results : Of 14 patients who had clinical follow-up of one year or longer, thirteen patients $(93\%)$ were improved clinically at follow-up examination. Clinical symptom worsened in one patient at 4 months after SRS as a result of intratumoral edema, who underwent surgical resection at 7 months. OF 14 patients who had radiologic follow-up of one year or longer, tumor volume decreased in 7 patients $(50\%)$ at a median of 11 months (range, $6\~25\;months$), remained stable in 6 patients $(43\%)$, and increased in one patient $(7\%)$, who underwent surgical resection at 44 months. New radiation-induced neurological deficits developed in six patients $(23\%)$. Five patients $(19\%)$ had transient neurological deficits, completely resolved by conservative treatment including steroid therapy. Radiation-induced brain necrosis developed in one patient $(3.8\%)$ at 9 months after SRS who followed by surgical resection of tumor and necrotic tissue. Conclusions : LINAC-based SRS proves to be an effective and safe management strategy for small to moderate sized meningiomas, inoperable, residual, and recurrent, but long-term follow-up will be necessary to fully evaluate its efficacy. To reduce the radiation-induced neurological deficit for large size meningioma and/or in the proximity of critical and neural structure, more delicate treatment planning and optimal decision of radiation dose will be necessary.

  • PDF

Dosimetric Characteristics of Detectors in Measurement of Beam Data for Small Fields of Linear Accelerator (선형가속기의 소조사면에 대한 빔 자료 측정에서 검출기의 선량 특성 분석)

  • Koo, Ki-Lae;Yang, Oh-Nam;Lim, Cheong-Hwan;Choi, Won-Sik;Shin, Seong-Soo;Ahn, Woo-Sang
    • Journal of radiological science and technology
    • /
    • v.35 no.3
    • /
    • pp.265-273
    • /
    • 2012
  • Aquisition of accurate beam data is very important to calculate a reliable dose distribution of the treatment planning system for small radiation fields in intensity-modulated radiation therapy(IMRT) and stereotactic radiosurgery(SRS). For the measurement of small fields, the choice of a suitable detector is important due to the shape gradient in profile penumbra, the lack of lateral electronic equilibrium, and the effect of effective detector volume. Therefore, this study was to analyze the dosimetric characteristics of various detectors in measurement of beam data for small fields of linear accelerator. 0.01cc and 0.13cc ion chambers (CC01 and CC13) and a stereotactic diode detector(SFD) were used for measurement of small fields. The beam data, including the percent depth dose, output factor, and beam profile were acquired under 6 MV and 15 MV photon beams. Measurements were performed with the field size ranging from $2{\times}2cm^2$ to $5{\times}5cm^2$. For $2{\times}2cm^2$ field size, the differences of the ratios of $PDD_{20}$ and $PDD_{10}$ measured by CC01 and SFD detectors were 1.02% and 0.12% for 6 MV and 15 MV photon beams, respectively. For field sizes larger than $3{\times}3cm^2$, the differences of values of $PDD_{20}/PDD_{10}$ obtained from each detector were 1.15% and 0.71% for 6 MV and 15 MV photon beams, respectively. The output factors obtained from CC01 and SFD for $2{\times}2cm^2$ field size were within 0.5% and 1.5% for 6 MV and 15 MV, respectively. The differences in output factor of three detectors for $3{\times}3cm^2$ to $5{\times}5cm^2$ field sizes were within 0.5%. Profile penumbras measured by the SFD, CC01, and CC13 detectors at three depths were average 2.7 mm and 3.5 mm, 3.4 mm and 4.3 mm, and 5.2 mm and 6.1 mm for 6 MV and 15 MV photon beams, respectively. In conclusion, it could be possible to use of the CC01 and SFD detectors for the measurement of percent depth dose and output factor for $2{\times}2cm^2$ field size, and to use of three detectors for $3{\times}3cm^2$ to $5{\times}5cm^2$ field sizes. CC01 and SFD detectors, consider ably smaller than the radiation field, should be used in order to accurately measure the profile penumbra for small field sizes.

Research on Perfusion CT in Rabbit Brain Tumor Model (토끼 뇌종양 모델에서의 관류 CT 영상에 관한 연구)

  • Ha, Bon-Chul;Kwak, Byung-Kook;Jung, Ji-Sung;Lim, Cheong-Hwan;Jung, Hong-Ryang
    • Journal of radiological science and technology
    • /
    • v.35 no.2
    • /
    • pp.165-172
    • /
    • 2012
  • We investigated the vascular characteristics of tumors and normal tissue using perfusion CT in the rabbit brain tumor model. The VX2 carcinoma concentration of $1{\times}10^7$ cells/ml(0.1ml) was implanted in the brain of nine New Zealand white rabbits (weight: 2.4kg-3.0kg, mean: 2.6kg). The perfusion CT was scanned when the tumors were grown up to 5mm. The tumor volume and perfusion value were quantitatively analyzed by using commercial workstation (advantage windows workstation, AW, version 4.2, GE, USA). The mean volume of implanted tumors was $316{\pm}181mm^3$, and the biggest and smallest volumes of tumor were 497 $mm^3$ and 195 $mm^3$, respectively. All the implanted tumors in rabbits are single-nodular tumors, and intracranial metastasis was not observed. In the perfusion CT, cerebral blood volume (CBV) were $74.40{\pm}9.63$, $16.08{\pm}0.64$, $15.24{\pm}3.23$ ml/100g in the tumor core, ipsilateral normal brain, and contralateral normal brain, respectively ($p{\leqq}0.05$). In the cerebral blood flow (CBF), there were significant differences between the tumor core and both normal brains ($p{\leqq}0.05$), but no significant differences between ipsilateral and contralateral normal brains ($962.91{\pm}75.96$ vs. $357.82{\pm}12.82$ vs. $323.19{\pm}83.24$ ml/100g/min). In the mean transit time (MTT), there were significant differences between the tumor core and both normal brains ($p{\leqq}0.05$), but no significant differences between ipsilateral and contralateral normal brains ($4.37{\pm}0.19$ vs. $3.02{\pm}0.41$ vs. $2.86{\pm}0.22$ sec). In the permeability surface (PS), there were significant differences among the tumor core, ipsilateral and contralateral normal brains ($47.23{\pm}25.45$ vs. $14.54{\pm}1.60$ vs. $6.81{\pm}4.20$ ml/100g/min)($p{\leqq}0.05$). In the time to peak (TTP) were no significant differences among the tumor core, ipsilateral and contralateral normal brains. In the positive enhancement integral (PEI), there were significant differences among the tumor core, ipsilateral and contralateral brains ($61.56{\pm}16.07$ vs. $12.58{\pm}2.61$ vs. $8.26{\pm}5.55$ ml/100g). ($p{\leqq}0.05$). In the maximum slope of increase (MSI), there were significant differences between the tumor core and both normal brain($p{\leqq}0.05$), but no significant differences between ipsilateral and contralateral normal brains ($13.18{\pm}2.81$ vs. $6.99{\pm}1.73$ vs. $6.41{\pm}1.39$ HU/sec). Additionally, in the maximum slope of decrease (MSD), there were significant differences between the tumor core and contralateral normal brain($p{\leqq}0.05$), but no significant differences between the tumor core and ipsilateral normal brain($4.02{\pm}1.37$ vs. $4.66{\pm}0.83$ vs. $6.47{\pm}1.53$ HU/sec). In conclusion, the VX2 tumors were implanted in the rabbit brain successfully, and stereotactic inoculation method make single-nodular type of tumor that was no metastasis in intracranial, suitable for comparative study between tumors and normal tissues. Therefore, perfusion CT would be a useful diagnostic tool capable of reflecting the vascularity of the tumors.