• Title/Summary/Keyword: Stereoscopic Imaging

Search Result 57, Processing Time 0.021 seconds

Interactive 3D Integral Imaging System using Single Camera (하나의 카메라를 이용한 인터렉티스 3D 집적 영상 시스템)

  • Shin, Dong-Hak;Kim, Eun-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.10C
    • /
    • pp.829-835
    • /
    • 2008
  • Recently, 3D integral imaging system, which is well known as an auto-stereoscopic 3D display method, has been gaining great attention amongst researchers. The integral imaging is a promising 3D display technology since it is able to deliver continuous viewing points, full parallax, and full color view to the observers in space. In this paper, we propose a novel interactive 3D integral imaging system using a single camera. The user interface is implemented by adding a camera in the conventional integral imaging system. To show the possibility of the proposed system, we implement the optical setup and present the preliminary results. To our best knowledge, this is the first time to study an interactive 3D integral imaging.

Research on the Development of an Integral Imaging System Framework and an Improved Viewpoint Vector Rendering Method Utilizing GPU (GPU를 이용한 개선된 뷰포인트 벡터 렌더링 방식의 집적영상시스템 프레임워크에 관한 연구)

  • Lee, Bin-Na-Ra;Park, Kyoung-Shin;Cho, Yong-Joo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.10
    • /
    • pp.1767-1772
    • /
    • 2006
  • Computer-generated integral imaging system is an auto-stereoscopic display system that users can see and feel the stereoscopic images when they see the pre-rendered elemental images through a lens array. The process of constructing elemental images using computer graphics is called image mapping. Viewpoint vector rendering (VVR) method is one of the image mapping algorithm specially designed for real-time graphics applications, which would not be affected by the size of the rendered objects or the number of elemental lenses used in the integral imaging system. This paper describes a new VVR framework which improved its rendering performance considerably. It also compares the previous VVR implementation with the new VVR work utilizing GPU and shows that newer implementation shows pretty big improvements over the old method.

The establishment of the secondary copyright according to the production method of the 3D stereoscopic video content and the attribution (3D입체영상 콘텐츠의 제작방법에 따른 2차적 저작권 성립 여부와 귀속에 관한 연구)

  • Lee, Sung-Gil;Kim, Gwang-Ho;Kim, Joon-Gi
    • Journal of Digital Contents Society
    • /
    • v.15 no.2
    • /
    • pp.237-250
    • /
    • 2014
  • In this paper, the research problem (1) 2D to 3D stereoscopic images to create the work, the stereoscopic 3D production work in accordance with the method works independently of the 2D image derivatives can be recognized as whether the rights were discussed. (2) In addition, 3D imaging work has to be recognized as a derivatives, the copyright belongs create derivatives and about the rights of attribution investigated.

Enhanced Image Mapping Method for Computer-Generated Integral Imaging System (집적 영상 시스템을 위한 향상된 이미지 매핑 방법)

  • Lee Bin-Na-Ra;Cho Yong-Joo;Park Kyoung-Shin;Min Sung-Wook
    • The KIPS Transactions:PartB
    • /
    • v.13B no.3 s.106
    • /
    • pp.295-300
    • /
    • 2006
  • The integral imaging system is an auto-stereoscopic display that allows users to see 3D images without wearing special glasses. In the integral imaging system, the 3D object information is taken from several view points and stored as elemental images. Then, users can see a 3D reconstructed image by the elemental images displayed through a lens array. The elemental images can be created by computer graphics, which is referred to the computer-generated integral imaging. The process of creating the elemental images is called image mapping. There are some image mapping methods proposed in the past, such as PRR(Point Retracing Rendering), MVR(Multi-Viewpoint Rendering) and PGR(Parallel Group Rendering). However, they have problems with heavy rendering computations or performance barrier as the number of elemental lenses in the lens array increases. Thus, it is difficult to use them in real-time graphics applications, such as virtual reality or real-time, interactive games. In this paper, we propose a new image mapping method named VVR(Viewpoint Vector Rendering) that improves real-time rendering performance. This paper describes the concept of VVR first and the performance comparison of image mapping process with previous methods. Then, it discusses possible directions for the future improvements.

Geometric analysis and anti-aliasing filter for stereoscopic 3D image scaling (스테레오 3D 영상 스케일링에 대한 기하학적 분석 및 anti-aliasing 필터)

  • Kim, Wook-Joong;Hur, Nam-Ho;Kim, Jin-Woong
    • Journal of Broadcast Engineering
    • /
    • v.14 no.5
    • /
    • pp.638-649
    • /
    • 2009
  • Image resizing (or scaling) is one of the most essential issues for the success of visual service because image data has to be adapted to the variety of display features. For 2D imaging, the image scaling is generally accomplished by 2D image re-sampling (i.e., up-/down-sampling). However, when it comes to stereoscopic 3D images, 2D re-sampling methods are inadequate because additional consideration on the third dimension of depth is not incorporated. Practically, stereoscopic 3D image scaling is process with left/right images, not stereoscopic 3D image itself, because the left/right Images are only tangible data. In this paper, we analyze stereoscopic 3D image scaling from two aspects: geometrical deformation and frequency-domain aliasing. A number of 3D displays are available in the market and they have various screen dimensions. As we have more varieties of the displays, efficient stereoscopic 3D image scaling is becoming more emphasized. We present the recommendations for the 3D scaling from the geometric analysis and propose a disparity-adaptive filter for anti-aliasing which could occur during the image scaling process.

Development of Immersive 3-D Game Using Stereoscopic Imaging (입체 영상을 이용한 몰입형 3차원 게임 제작)

  • 정재훈;김재희;박인규
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10b
    • /
    • pp.658-660
    • /
    • 2004
  • 본 논문에서는 입체 영상을 이용한 몰입형 3차원 게임 제작 기법을 제안한다. 제안하는 기법은 셔터글래스를 이용하여 좌안과 우안의 영상을 분리 투영하여 사용자로 하여금 입체감 을 느낄 수 있도록 한다. 이때, 사용자가 느끼는 눈의 피로를 최소화하기 위하여 입체 영상 디스플레이에 필요한 인자들을 최적으로 선택하는 방법을 제안한다. 또한, 예시되는 블록격파게임에서의 충돌처리를 효율적으로 구현하기 위하여 본 논문에서는 체적소와 광선 추적법을 응용한 효율적인 알고리즘을 제안한다.

  • PDF

3-D information of Object by Modified Goldstein Algorithm at Digital holography

  • Yoon, Seon-Kyu;Kim, Sung-Kyu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1486-1489
    • /
    • 2007
  • Generally many kind of phase unwrapping method are used to obtain three-dimensional feature in digital holography. Goldstein algorithm is representative method. But Goldstein algorithm has some problems. We developed a modified Goldstein algorithm that could solve the problem of Goldstein algorithm using the boundary information. Obtained three-dimensional information can be applied to 3-D contents of stereoscopic, multi-view, SMV, or holographic display.

  • PDF

Implementation of an Emulator for the Integrated Image Reconstruction according to Distance (거리에 따른 집적 영상 복원을 지원하는 에뮬레이터의 구현)

  • Jang, Ha Eun;Lee, Eun Ji;Lee, Yeon Ju;Lim, Soon-Bum
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.3
    • /
    • pp.548-556
    • /
    • 2016
  • Integral imaging is an auto-stereoscopic display method that can produce 3D image of a finite viewing window through an array of micro elemental lenses. Integral imaging requires the pickup part of each elemental images acquisition and display part of reconstruction of the images. The successful reconstructed image depends on various parameters such as distance between lens arrays and display device, focal length of lenses, and a number of the array. In this paper, we present reconstruction emulator for display of Integral imaging in order to adjust parameters for 3D contents reconstruction and to observe the result from different configuration. Especially, we provide the user interface for the emulator to control the distance easily. We have confirmed through various experiments that the emulator adjusted the distance and could check error in the process of creating elemental images.

VR, AR Simulation and 3D Printing for Shoulder and Elbow Practice (VR, AR 시뮬레이션 및 3D Printing을 활용한 어깨와 팔꿈치 수술실습)

  • Lim, Wonbong;Moon, Young Lae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.12
    • /
    • pp.175-179
    • /
    • 2016
  • Recent advances in technology of medical image have made surgical simulation that is helpful to diagnosis, operation plan, or education. Improving and enhancing the medical imaging have led to the availability of high definition images and three-dimensional (3D) visualization, it allows a better understanding in the surgical and educational field. The Real human field of view is stereoscopic. Therefore, with just 2D images, stereoscopic reconstruction process through the surgeon's head, is necessary. To reduce these process, 3D images have been used. 3D images enhanced 3D visualization, it provides significantly shorter time for surgeon for judgment in complex situations. Based on 3D image data set, virtual medical simulations, such as virtual endoscopy, surgical planning, and real-time interaction, have become possible. This article describes principles and recent applications of newer imaging techniques and special attention is directed towards medical 3D reconstruction techniques. Recent advances in technology of CT, MR and other imaging modalities has resulted in exciting new solutions and possibilities of shoulder imaging. Especially, three-dimensional (3D) images derived from medical devices provides advanced information. This presentation describes the principles and potential applications of 3D imaging techniques, simulation and printing in shoulder and elbow practice.

Layouts and Cells in Integral Photography and Point Light Source Model

  • Saveljev, Vladimir V.;Shin, Seung-Jung
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.131-138
    • /
    • 2009
  • The similarity between two groups of displaying methods is demonstrated in two ways, analytically and experimentally. A variety of layouts of the integral photography and display devices based on the point light source model is classified and analyzed in terms of projections and common/separate image planes. In particularly, the transformation matrix is found. Simulation experiments based on the image processing were performed. The layouts, analytical formulas, and experimental results show the similarity of both groups for several layouts.