• Title/Summary/Keyword: Stereoscopic Images

Search Result 313, Processing Time 0.021 seconds

A study on characteristics related to texture, colour temperature and contrast ratio to improve the depth of stereoscopic images (깊이감 향상을 위한 질감, 색온도, 대비비 관련 특성 연구)

  • Hong, Ji-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.4
    • /
    • pp.37-42
    • /
    • 2018
  • With advancements in digital image production technology, the branch of stereoscopic image technology has also been undergoing active development. Accordingly, research and development on cutting-edge display products for mounting stereoscopic images are currently being pursued. There are various problems that can occur when viewing 3D images. Because viewers feel visual fatigue while perceiving the depth of the images provided via an artificial method, a negative human factor such as visual fatigue has become one of the most prominent concerns, especially as it is a factor that affects the ongoing maintenance of 3D images. Therefore, by identifying the factors affecting the depth of the graphic images provided in 2D images, and subsequently using this information to develop an image processing method, we conducted depth-related experiments and analysed them under the assumption that stereoscopic images could be reproduced without visual fatigue. Thus, we analysed the most significant factors related to depth and verified the interactions by performing depth-related factors-based ANOVA variance analysis by differentially applying the texture, colour temperature, and contrast ratio to graphic images. We determined the significance of the factors related to depth and proposed a method to improve depth based on an analysis of the results of the experiments conducted in this study.

Future of Stereoscopic 3D through the Analysis of Realistic Media Art (실감미디어 아트 분석을 통한 3D 입체영상의 미래 조망)

  • Kim, Hee-Young;Shin, Chang-Ok
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.1
    • /
    • pp.91-102
    • /
    • 2012
  • Generally today's culture and the arts industry has been focusing more on economic value than the arts. Therefore this paper will elucidate the meaning of the culture and the arts can be a break though which can only include commercial and economic values but transcend its values ultimately. First of all, this paper will suggest an advanced 3D stereoscopic images by analysis of examples and environments of realistic media arts. Looking into the changes of related technologies and market environments, the motion-recognition technology, as seem in SF film "Minority report", has become a feasible technology. In the past, 3D stereoscopic images were shown in the theme park theatre and exhibition halls for group viewing. but recent 3D TV and display devices have changed those environments to personal. Since domestic researches of realistic media art has been little, this paper will analyze them respecting to three broad classifications. The results are : Firstly, in CAVE method, more impact capabilities of spectators are expected that they can manipulate interactive interfaces freely and the physical movements of spectators can operate interactively. Secondly, inter-network communications and expansion of viewers' perceptions are predicted by way of HMD method, sensor suites and communication equipments. Thirdly, combinations of HMD and motion tracking utilization is foreseen. With the convergent usages of these three features, we can prospect the possibilities of interactive 4D that spectators wearing 3D stereoscopic display devices can experience and make their own 3D stereoscopic images actively at the point of their views.

3D Stereoscopic Image Generation of a 2D Medical Image (2D 의료영상의 3차원 입체영상 생성)

  • Kim, Man-Bae;Jang, Seong-Eun;Lee, Woo-Keun;Choi, Chang-Yeol
    • Journal of Broadcast Engineering
    • /
    • v.15 no.6
    • /
    • pp.723-730
    • /
    • 2010
  • Recently, diverse 3D image processing technologies have been applied in industries. Among them, stereoscopic conversion is a technology to generate a stereoscopic image from a conventional 2D image. The technology can be applied to movie and broadcasting contents and the viewer can watch 3D stereoscopic contents. Further the stereoscopic conversion is required to be applied to other fields. Following such trend, the aim of this paper is to apply the stereoscopic conversion to medical fields. The medical images can deliver more detailed 3D information with a stereoscopic image compared with a 2D plane image. This paper presents a novel methodology for converting a 2D medical image into a 3D stereoscopic image. For this, mean shift segmentation, edge detection, intensity analysis, etc are utilized to generate a final depth map. From an image and the depth map, left and right images are constructed. In the experiment, the proposed method is performed on a medical image such as CT (Computed Tomograpy). The stereoscopic image displayed on a 3D monitor shows a satisfactory performance.

Using 3D Sweetening for Efficient Directing Space in Stereoscopic Image (3D 스위트닝 과정을 이용한 입체영상의 효율적인 공간 연출)

  • Kim, Myung-Ha;Hong, Hyun-Ki
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.10
    • /
    • pp.63-71
    • /
    • 2012
  • Depth understanding is important for stereoscopic and various methods including space design and cognitive science should be taken account in contents production. Among them, human scientific engineering such as human factor needs to be touched. More specifically, when the stereoscopic designer determines a binocular disparity, the viewpoint of the camera has to be matched with that of the audience. In this process, the structural problem by the distortion due to the dichoptic error is happened, Therefore, 3D sweetening process based on geometric re-analysis and human scientific engineering to minimize the visual fatigue is significant. This paper analyzes the inconsistency problems of the viewpoint in stereoscopic images, and we produce the stereoscopic image contents based on human factors.

Development of HD Resolution Stereoscopic Camera and Apparatus for Recognizing Depth of Object (HD 해상도 스테레오 영상 카메라 구현과 거리 인식 응용)

  • Han, Byung-Wan;Lim, Sung-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.351-357
    • /
    • 2013
  • Two cameras which function like human eyes, are needed to make 3D stereoscopic image. That is, stereoscopic image is made via 3 dimensional image processing for combining two images from left and right camera. In this paper two high resolution zoom cameras are used to make HD resolution stereoscopic camera. And the algorithm which convert to stereoscopic image from HD resolution zoom camera image, is implemented using FPGA for real-time operation. The algorithm which measure the depth of object between left and right image is proposed.

Intensity Correction of 3D Stereoscopic Images Using Binarization-Based Region Segmentation (이진화기반 영역분할을 이용한 3D입체영상의 밝기보정)

  • Kim, Sang-Hyun;Kim, Jeong-Yeop
    • The KIPS Transactions:PartB
    • /
    • v.18B no.5
    • /
    • pp.265-270
    • /
    • 2011
  • In this paper, we propose a method for intensity correction using binarization-based region segmentation in 3D stereoscopic images. In the proposed method, 3D stereoscopic right image is segmented using binarizarion. Small regions in the segmented image are eliminated. For each region in right image, a corresponding region in left image is decided through region matching using correlation coefficient. When region-based matching, in order to prevent overlap between regions, we remove a portion of the area closed to the region boundary using morphological filter. The intensity correction in left and right image can be performed through histogram specification between the corresponding regions. Simulation results show the proposed method has the smallest matching error than the conventional method when we generate the right image from the left image using block based motion compensation.

Stereoscopic Camera with a CCD and Two Zoom Lenses (단일 CCD와 두개의 줌렌즈로 구성한 입체 카메라)

  • Lee, Sang-Eun;Jo, Jae-Heung;Jung, Eui-Min;Lee, Kag-Hyeon
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.1
    • /
    • pp.38-46
    • /
    • 2006
  • The stereoscopic camera based on the image formation principle on human eyes and the brain is designed and fabricated by using a CCD and two zoom lenses. As two zoom lenses are separated as 65 mm of the human ocular distance with the wide angle of view of $50^{\circ}$ and the variable convergence angle from $0^{\circ}$ to $16^{\circ}$, the camera can be operated by the similar binocular parallax as human eyes. In order to take the dynamic stereoscopic picture, a shutter blade for the selection of the left and right images in turns, an X-cube image combiner fur the composition of these two images through the blade, and a CCD with 60 frames per second are used.

PARALLAX ADJUSTMENT FOR REALISTIC 3D STEREO VIEWING OF A SINGLE REMOTE SENSING IMAGE

  • Kim, Hye-Jin;Choi, Jae-Wan;Chang, An-Jin;Yu, Ki-Yun
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.452-455
    • /
    • 2007
  • 3D stereoscopic viewing of large scale imagery, such as aerial photography and satellite images, needs different parallaxes relative to the display scale. For example, when a viewer sees a stereoscopic image of aerial photography, the optimal parallax of its zoom-in image should be smaller than that of its zoom-out. Therefore, relative parallax adjustment according to the display scale is required. Merely adjusting the spacing between stereo images is not appropriate because the depths of the whole image are either exaggerated or reduced entirely. This paper focuses on the improving stereoscopic viewing with a single remote sensing image and a digital surface model (DSM). We present the parallax adjustment technique to maximize the 3D realistic effect and the visual comfort. For remote sensing data, DSM height value can be regarded as disparity. There are two possible kinds of methods to adjust the relative parallax with a single image performance. One is the DSM compression technique: the other is an adjustment of the distance between the original image and its stereo-mate. In our approach, we carried out a test to evaluate the optimal distance between a single remote sensing image and its stereo-mate, relative to the viewing scale. Several synthetic stereo-mates according to certain viewing scale were created using a parallel projection model and their anaglyphs were estimated visually. The occlusion of the synthetic stereo-mate was restored by the inpainting method using the fields of experts (FoE) model. With the experiments using QuickBird imagery, we could obtain stereoscopic images with optimized parallax at varied display scales.

  • PDF

Stereoscopic 3D Modelling Approach with KOMPSAT-2 Satellite Data

  • Tserennadmid, T.;Kim, Tae-Jung
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.3
    • /
    • pp.205-214
    • /
    • 2009
  • This paper investigates stereo 3D viewing for linear pushbroom satellite images using the Orbit-Attitude Model proposed by Kim (2006) and using OpenGL graphic library in Digital Photogrammetry Workstation. 3D viewing is tested with KOMPSAT-2 satellite stereo images, a large number of GCPs (Ground control points) collected by GPS surveying and orbit-attitude sensor model as a rigorous sensor model. Comparison is carried out by two accuracy measurements: the accuracy of orbit-attitude modeling with bundle adjustment and accuracy analysis of errors in x and y parallaxes. This research result will help to understand the nature of 3D objects for high resolution satellite images, and we will be able to measure accurate 3D object space coordinates in virtual or real 3D environment.

Development of 3D Display System for Video-guide Operation

  • Honda, Toshio;Suzuki, Kou;Kuboshima, Yasuhito;Shiina, Tatsuo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1799-1802
    • /
    • 2007
  • In the constructed auto-stereoscopic display system for one observer. 1.stereoscopic images displayed on a special LCD are made on a large concave mirror. 2.The view-zone limiting aperture is set between the projection lens and the concave mirror. 3.The real image of the aperture is made at the observer's eye position by the concave mirror. 4.The observer's eye-position tracking of the view-zone is realized. 5.At same time, stereoscopic image changes automatically according to the eye position of the observer.

  • PDF