• Title/Summary/Keyword: Stereoscopic Images

Search Result 313, Processing Time 0.021 seconds

Readability Enhancement Algorithm for Patterned Retarder based Stereoscopic 3D display (Patterned Retarder 방식 입체 디스플레이에서의 가독성 향상 기법)

  • Lee, Hui Jung;Song, Byung Cheol
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.5
    • /
    • pp.175-182
    • /
    • 2013
  • This paper proposes a readability enhancement filter for Patterned Retarder (PR) display. In general, when some texts in stereoscopic images are shown on PR display, their readability tends to be lowered. In order to overcome this problem, we present a readability enhancement algorithm which consists of readability filtering stage and post-processing stage for specific characters. First, each input stereo image is divided into an odd line image and an even line image. Then, they are independently up-scaled vertically by using Lanczos filter. Next, two up-scaled line images are averaged considering vertical phase difference. In post-processing stage, two specific characters which are normally difficult to read on PR display are detected, and they are filtered for additional readability enhancement. Here, this additional filtering is based on a specific brightness adjustment, and is applied only for two characters. The experiment results show that the proposed method achieves significant improvement in terms of readability in comparison with the previous scheme.

Design of Fuzzy Inference System for Cameras Inter-Axial Distance Control of Remote Stereoscopic Photographs (원거리 입체촬영용 카메라 축간거리 조절을 위한 퍼지추론 시스템)

  • Byun, Gi-Sig;Oh, Sei-Woong;Kim, Gwan-Hyung;Kim, Min;Kim, Hyun-Jo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.1
    • /
    • pp.41-49
    • /
    • 2015
  • The common way to obtain a stereoscopic image of a subject at a distance is to place two cameras on the parallel axis rather than crossing axis. To find the IAD and maximum focal length, left and right images are obtained by varying the IAD of cameras and the focal length of the camera lens and the depth budget for the obtained images is analyzed through post production. Then, the database for IAD and focal length of the camera lens with the depth range that does not cause visual fatigue and visual discomfort are developed. These data are used to design fuzzy control and deduce the IAD and focal length of the camera lens to shoot a subject at a distance, and the function of the fuzzy control is confirmed through the actual shooting within the range of deduced IAD and focal length of the camera lens.

Development of Chameleonic Multi-Surface Display with Dynamic Projection Mapping (동적 실물영상투사 카멜레온(다변) 멀티 서피스 콘텐츠 연구)

  • Hong, Sung-Dae
    • Journal of Digital Contents Society
    • /
    • v.18 no.1
    • /
    • pp.123-132
    • /
    • 2017
  • The physical display technology is the ultimate display technology that human beings aspire, and the world makes use of laser, plasma and reflector plate. Besides, technology development of binocular stereoscopic display has been actively progressed, but there is a limitation to the intact physical representation such as influence of optical ambient light and brightness. In this paper, the display technology using physical deformation different from the existing optical display is approached as a cultural and emotional perspective. The purpose of this paper is to develop the multivariate display technology that can create 3D realistic stereoscopic images through projecting dynamic images on physically diversified screen by overcoming the limitations of 2D planar digital signage and study how to apply them to video, exhibition and performance.

High efficient 3D vision system using simplification of stereo image rectification structure (스테레오 영상 교정 구조의 간략화를 이용한 고효율 3D 비젼시스템)

  • Kim, Sang Hyun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.6
    • /
    • pp.605-611
    • /
    • 2019
  • 3D Vision system has many applications recently but popularization have many problems that need to be overcome. Volumetric display may process a amount of visual data and design the high efficient vision system for display. In case of stereo system for volumetric display, disparity vectors from the stereoscopic sequences and residual images with the reference images has been transmitted, and the reconstructed stereoscopic sequences have been displayed at the receiver. So central issue for the design of efficient volumetric vision system lies in selecting an appropriate stereo matching and robust vision system. In this paper, we propose high efficient vision system with the reduction of rectification error which can perform the 3D data extraction efficiently with low computational complexity. In experimental results with proposed vision system, the proposed method can perform the 3D data extraction efficiently with reducing rectification error and low computational complexity.

A full-color anaglyph three-dimensional display system using active color filter glasses

  • Kim, Jong-Hyun;Kim, Young-Hoon;Hong, Ji-Soo;Park, Gil-Bae;Hong, Kee-Hoon;Min, Sung-Wook;Lee, Byoung-Ho
    • Journal of Information Display
    • /
    • v.12 no.1
    • /
    • pp.37-41
    • /
    • 2011
  • Presented herein is a novel stereoscopic three-dimensional (3D) display system with active color filter glasses. This system provides full-color 3D images by applying the time-multiplexing technique on the original anaglyph method. By switching between the opposite anaglyph statuses, a full-color anaglyph is presented. A liquid crystal panel from a 3D monitor serves as an active color filter operating at 120 Hz. A display panel and a color filter are connected to one graphic card as a dual-link system, for synchronization. To test the quality of this system, a left/right-eye image separation test and an experiment with stereoscopic images were carried out. Although there was some crosstalk and blur, the system, as expected, provided full-color 3D display. This system overcomes a monochromatic 3D image, which is the major weakness of the original anaglyph system.

3D Conversion of 2D Video Encoded by H.264

  • Hong, Ho-Ki;Ko, Min-Soo;Seo, Young-Ho;Kim, Dong-Wook;Yoo, Ji-Sang
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.990-1000
    • /
    • 2012
  • In this paper, we propose an algorithm that creates three-dimensional (3D) stereoscopic video from two-dimensional (2D) video encoded by H.264 instead of using two cameras conventionally. Very accurate motion vectors are available in H.264 bit streams because of the availability of a variety of block sizes. 2D/3D conversion algorithm proposed in this paper can create left and right images by using extracted motion information. Image type of a given image is first determined from the extracted motion information and each image type gives a different conversion algorithm. The cut detection has also been performed in order to prevent overlapping of two totally different scenes for left and right images. We show an improved performance of the proposed algorithm through experimental results.

Hybrid Cepstral Filter for Precise Vergence Control of Parallel Stereoscopic Camera (수평이동방식 입체카메라의 주시각 제어를 위한 Hybrid Cepstral Filter에 의한 시차정보 추출)

  • Kwon, Ki-Chul;Kim, Nam
    • Journal of Broadcast Engineering
    • /
    • v.9 no.1
    • /
    • pp.91-94
    • /
    • 2004
  • The vergence controls of the parallel stereoscopic camera need only the disparity information of left and right images in horizontal direction. This paper proposed past and precise disparity value for stereoscopicimage pair in horizontal direction and the algorithm which can abstract disparity information through the HCF(Hybrid Cepstral Filter) for sign information. The proposed disparity information- extracting algorithm can obtain accurate disparity value of horizontal direction and signinformation by using both the one dimension cepstral filter which uses vertical projection data of left and right Image and the two dimension cepstral filter which uses down sampled image.

Fast Generation of Stereoscopic Virtual Environment Display Using P-buffer

  • Heo, Jun-Hyeok;Jung, Soon-Ki;Wohn, Kwang-Yun
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.2
    • /
    • pp.202-210
    • /
    • 1998
  • This paper is concerned with an efficient generation of stereoscopic views for complex virtual environments by exploiting frame coherence in visibility. The basic idea is to keep visible polygons throughout the rendering process. P-buffer, a buffer of image size, holds the id of the visible polygon for each pixel. This contrasts to the frame buffer and the Z-buffer which hold the color information and the depth information, respectively. For the generation of a consecutive image, the position and the orientation of the visible polygons in the current view are updated according to the viewer's movements, and re-rendered on the current image under the assumption that, when the viewer moves slightly, the visibility of polygons remains unchanged. In the case of stereoscopic views, it may not introduce much difficulty when we render the right(left) image using visible polygons on the (right) image only, The less difference in two images is, the easier the matching becomes in perceiving depth. Some psychophysical experiments have been conducted to support this claim. The computational complexity for generating a fight(left) image from the previous left(right) image is bounded by the size of image space, and accordingly. It is somewhat independent of the complexity of the 3-D scene.

  • PDF

A Study on the Improvements of Positioning Accuracy of Digital Elevation Model Using SPOT Satellite Triplet Images (SPOT 3중 입체위성영상을 이용한 수치표고모형의 정확도 개선)

  • Cho, Bong-Whan;Lee, Yong-Woong;Shin, Dae-Shik
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.3 no.1 s.5
    • /
    • pp.55-66
    • /
    • 1995
  • Most studies using satellite images have been performed to determine three dimensional positioning by stereoscopic analysis for stereo-pair or to extract digital elevation model by stereo matching using image correlation techniques. Because the small errors on the ground control points have a great impact on the results, however, it is hard to get reliable products when we analyze satellite orbital parameters or acquire digital elevation model by using only stereo-pair. Also, if there are noises, shadows, or clouds on the one of stereo pair, it is difficult to produce DEM(digital elevation model) on the area under analysis or to have good accuracy. In these case, it can be solved by systematic analysis of the multiple stereo images. This paper suggests the improvements on the accuracy of the digital elevation model by the developments of stereoscopic analysis techniques for the triplet of SPOT satellite images on the same area.

  • PDF

A Study on the Improvements of Positioning Accuracy of Digital Elevation Model Using SPOT Satellite Triplet Images (SPOT 3중 입체위성영상을 이용한 수치지형표고 정확도 개선)

  • Cho, Bong-Whan;Lee, Yong-Woong;Shin, Dae-Shik
    • 한국지형공간정보학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.99-119
    • /
    • 1995
  • Most studies using satellite images have been performed to determine three dimensional positioning by stereoscopic analysis for stereo-pair or to extract digital elevation model by stereo matching using image correlation techniques. Because the small errors on the ground control points have a great impact on the results, honorer, it is hard to get reliable products when we analyze satellite orbital parameters or acquire digital elevation model by using only stereo-pair. Also, if there are noises, shadows, or clouds on the one of stereo pair, it is difficult to produce DEM(digital elevation model) on the area under analysis or to have good accuracy. In these case, it can be solved by systematic analysis of the multiple stereo images. This paper suggests the improvements on the accuracy of the digital elevation model by the developments of stereoscopic analysis techniques for the triplet of SPOT satellite images on the same area.

  • PDF