• Title/Summary/Keyword: Stereolithography system

Search Result 77, Processing Time 0.024 seconds

Comparison of two computerized occlusal analysis systems for indicating occlusal contacts

  • Jeong, Min-Young;Lim, Young-Jun;Kim, Myung-Joo;Kwon, Ho-Beom
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.2
    • /
    • pp.49-54
    • /
    • 2020
  • PURPOSE. The purpose of this study was to compare the performance of Accura to that of the T-scan for indicating occlusal contacts. MATERIALS AND METHODS. Twenty-four subjects were selected. Their maxillary dental casts were scanned with a model scanner. The Stereolithography files of the casts were positioned to align with the occlusal plane. Occlusal surfaces of every tooth were divided into three to six anatomic regions. T-scan and Accura recordings were made during two masticatory cycles. The T-scan and Accura images were captured at the maximum bite force and overlapped to the cast. Photographs of interocclusal records were used as the reference during overlap. The occlusal contacts were counted to compare the T-scan and Accura. McNemar's test was used for statistical significance and the corresponding P-values were calculated from a chi-square distribution with one degree of freedom. The accuracy, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of Accura were calculated relative to the T-scan values as a control. RESULTS. No statistical differences (P>.05) were found between the T-scan and Accura methods. The accuracy of Accura was 75.8%, sensitivity was 82.1%, specificity was 60.1%, PPV was 82.9%, and NPV was 60.1%. CONCLUSION. Accura could be another possible option as a computerized occlusal analysis system for indicating occlusal contacts at maximum intercuspation.

Assessment of inlay ceramic restorations manufactured using the hot-pressing method (열 가압 방식을 사용하여 제작된 인레이 세라믹 수복물의 적합도 평가)

  • Lee, Beom-Il;You, Seung-Gyu;You, Seung-Min;Park, Dong-In;Kim, Ji-Hwan
    • Journal of Technologic Dentistry
    • /
    • v.42 no.1
    • /
    • pp.9-16
    • /
    • 2020
  • Purpose: The purpose of this study was to compare the marginal and internal fit of lithium disilicate ceramic inlay produced by heat pressing that inlay pattern made by subtractive manufacturing and additive manufacturing method. Methods: A mandibular lower first molar that mesial occlusal cavity (MO cavity) die was prepared. After fabricating an epoxy resin model using a silicone impression material, epoxy resin die was scanned with a dental model scanner to design an MO cavity inlay. The designed STL pile was used to fabricate wax patterns and resin patterns, and then lithium disilicate ceramic inlays were fabricated using hot-press method. For the measurement of the marginal and internal gap of the lithium disilicate, silicone replica method was applied, and gap was measured through an optical microscope (x 80). Data were tested for significant differences using the Mann-Whitney Utest. Results: The marginal fit was 103.56±9.92㎛ in the MIL-IN group and 81.57±9.33㎛ in the SLA-IN group, with a significant difference found between the two groups (p<0.05). The internal fit was 120.99±17.52㎛ in the MIL-IN group and 99.18±6.65㎛ in the SLA-IN group, with a significant difference found between the two groups (p<0.05). Conclusion: It is clinically more appropriate to apply the additive manufacturing than subtractive manufacturing method in producing lithium disilicate inlay using CAD/CAM system.

Evaluation of accuracy of 3-dimensional printed dental models in reproducing intermaxillary relational measurements: Based on inter-operator differences

  • Choi, Won-joon;Lee, Su-jung;Moon, Cheol-Hyun
    • The korean journal of orthodontics
    • /
    • v.52 no.1
    • /
    • pp.20-28
    • /
    • 2022
  • Objective: Although, digital models have recently been used in orthodontic clinics, physical models are still needed for a multitude of reasons. The purpose of this study was to assess whether the printed models can replace the plaster models by evaluating their accuracy in reproducing intermaxillary relationships and by appraising the clinicians' ability to measure the printed models. Methods: Twenty sets of patients' plaster models with well-established occlusal relationships were selected. Models were scanned using an intraoral scanner (Trios 3, 3Shape Dental System) by a single operator. Printed models were made with ZMD-1000B light-curing resin using the stereolithography method 3-dimensional printer. Validity, reliability, and reproducibility were evaluated using measurements obtained by three operators. Results: In evaluation of validity, all items showed no significant differences between measurements taken from plaster and printed models. In evaluation for reliability, significant differences were found in the distance between the gingival zeniths of #23-#33 (DZL_3) for the plaster models and at #17-#43 (DZCM_1) for the printed models. In evaluation for reproducibility, the plaster models showed significant differences between operators at midline, and printed models showed significant differences at 7 measurements including #17-#47 (DZR_7). Conclusions: The validity and reliability of intermaxillary relationships as determined by the printed model were clinically acceptable, but the evaluation of reproducibility revealed significant inter-operator differences. To use printed models as substitutes for plaster models, additional studies on their accuracies in measuring intermaxillary relationship are required.

Comparison of Surface Characteristics According to 3D Printing Methods and Materials for the Fabrication of Microfluidic Systems (미세유체시스템 제작을 위한 3D 프린팅 방식 및 소재 별 표면특성 비교)

  • Bae, Seo Jun;Im, Do Jin
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.706-713
    • /
    • 2019
  • In this study, basic research was conducted to provide guidelines for selecting printers and materials suitable for each application case by analyzing 3D printing method and surface characteristics of materials suitable for microfluidic system. We have studied the surface characteristics according to the materials for the two typical printing methods: The most commonly used method of Fused Deposition Modeling (FDM) printing and the relatively high resolution method of Stereolithography (SLA) printing. The FDM prints exhibited hydrophilic properties before post - treatment, regardless of the material, but showed hydrophobic properties after post - treatment with acetone vapor. It was confirmed by the observation of surface roughness using SEM that the change of the contact angle was due to the removal of the surface structure by post-treatment. SLA prints exhibited hydrophilic properties compared to FDM prints, but they were experimentally confirmed to be capable of surface modification using hydrophobic coatings. It was confirmed that it is impossible to make a transparent specimen in the FDM method. However, sufficient transparency is secured in the case of the SLA method. It is also confirmed that the electroporation chip of the digital electroporation system based on the droplet contact charging phenomenon was fabricated by the SLA method and the direct application to the microfluidic system by demonstrating the electroporation successfully.

Comparison of crown designs of different dental occupational groups, using CAD-CAM (CAD-CAM을 이용하여 디자인한 금관의 치과 직업군에 따른 형태 비교)

  • Kim, TaeHyeon;Kim, Jong-Eun;Lee, Ah-Reum;Park, Young-Bum
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.54 no.3
    • /
    • pp.234-238
    • /
    • 2016
  • Purpose: Increasing use of computer aided design-computer aided manufacturing (CAD-CAM) system and number of design software made design of restoration easy and quick. Outcome of restoration has been dependent on dental technician's wax up proficiency, dentists can design restoration for themselves now. This study aims to investigate the outcome of restoration designs, according to handling skill of CAD-CAM design tool. Materials and methods: A patient's mandibular right 1st molar was prepared. After taking impression, stone model was made, scanned the stone model with 3 shape intra-oral scanner, stereolithography (STL) file was extracted. With 3shape dental designer, one dental technician with more than 5 years work experience (designer 0) and three dental technicians with less than 2years work experience (designer 1, 2, 3-group DT) and 4 1st year residents (designer 4, 5, 6, 7-group RT) designed gold crown on the same STL file. Designed crown's MD (mesio-distal) and BL (bucco-lingual) diameter, height of crown, inter-cuspal distance, number of occlusal contact points were compared. Statistical analysis was carried out, test of normality within each group, using independent t-test. Number of contact points were compared, using Wilcoxon signed-rank test. Results: There was no significant difference between group DT and group RT. Number of contact points also resulted in no significant difference. Conclusion: The outcome of each designed crowns showed no statistical differences, in values which can be expressed as numbers. Subjective factors were different. With increasing proficiency in handling designing software, fabrication of restorations according to each designer's occlusal concept can be made easy.

Fabrication of Microstructures Using Double Contour Scanning (DCS) Method by Two-Photon Polymerization (이광자 광중합의 윤곽선 스캐닝법에 의한 마이크로 입체형상 제작)

  • Park Sang Hu;Lim Tae Woo;Lee Sang Ho;Yang Dong-Yol;Kong Hong Jin;Lee Kwang-Sup
    • Polymer(Korea)
    • /
    • v.29 no.2
    • /
    • pp.146-150
    • /
    • 2005
  • A nano-stereolithouaphy (NSL) apparatus has been developed for fabrication of microstructures with the resolution of 150 nanometers. In the NSL process, a complicated 3D structure can be fabricated by building layer by layer, so it does not require any sacrificial layer or any supporting structure. A laminated layer was fabricated by means of solidifying liquid-state monomers using two-photon absorption (TPA) which was induced by a femtosecond laser. When the fabrication of a 3D laminated structure was finished, unsolidified liquid-stage resins were removed to develop the fabricated structure by dropping several droplets of solvent, then the polymerized structure was only left on the glass substrate. A microstructure is fabricated by vector scanning method to save the fabrication time. The shell thickness of a structure is very thin within 200 nm, when it is fabricated by a single contour scanning (SCS) path. So, a fabricated structure can be deformed easily in the developing process. In this work, a double contour scanning (DCS) method was proposed to reinforce the strength of a shell typed structure, and a microcup was fabricated to show the usefulness of the developed NSL system and the DCS method.

Rating criteria to evaluate student performance in digital wax-up training using multi-purpose software

  • Mino, Takuya;Kurosaki, Yoko;Tokumoto, Kana;Higuchi, Takaharu;Nakanoda, Shinichi;Numoto, Ken;Tosa, Ikue;Kimura-Ono, Aya;Maekawa, Kenji;Kim, Tae Hyung;Kuboki, Takuo
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.4
    • /
    • pp.203-211
    • /
    • 2022
  • PURPOSE. The aim of this study was to introduce rating criteria to evaluate student performance in a newly developed, digital wax-up preclinical program for computer-aided design (CAD) of full-coverage crowns and preliminarily investigate the reliability and internal consistency of the rating system. MATERIALS AND METHODS. This study, conducted in 2017, enrolled 47 fifth-year dental students of Okayama University Dental School. Digital wax-up training included a fundamental practice using computer graphics (CG), multipurpose CAD software programs, and an advanced practice to execute a digital wax-up of the right mandibular second molar (#47). Each student's digital wax-up work (stereolithography data) was evaluated by two instructors using seven qualitative criteria. The total qualitative score (0-90) of the criteria was calculated. The total volumetric discrepancy between each student's digital wax-up work and a reference prepared by an instructor was automatically measured by the CAD software. The inter-rater reliability of each criterion was analyzed using a weighted kappa index. The relationship between the total volume discrepancy and the total qualitative score was analyzed using Spearman's correlation. RESULTS. The weighted kappa values for the seven qualitative criteria ranged from 0.62 - 0.93. The total qualitative score and the total volumetric discrepancy were negatively correlated (ρ = -0.27, P = .09, respectively); however, this was not statistically significant. CONCLUSION. The established qualitative criteria to evaluate students' work showed sufficiently high inter-rater reliability; however, the digitally measured volumetric discrepancy could not sufficiently predict the total qualitative score.