• Title/Summary/Keyword: Stereo Visual Inertial Odometry

Search Result 2, Processing Time 0.016 seconds

AprilTag and Stereo Visual Inertial Odometry (A-SVIO) based Mobile Assets Localization at Indoor Construction Sites

  • Khalid, Rabia;Khan, Muhammad;Anjum, Sharjeel;Park, Junsung;Lee, Doyeop;Park, Chansik
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.344-352
    • /
    • 2022
  • Accurate indoor localization of construction workers and mobile assets is essential in safety management. Existing positioning methods based on GPS, wireless, vision, or sensor based RTLS are erroneous or expensive in large-scale indoor environments. Tightly coupled sensor fusion mitigates these limitations. This research paper proposes a state-of-the-art positioning methodology, addressing the existing limitations, by integrating Stereo Visual Inertial Odometry (SVIO) with fiducial landmarks called AprilTags. SVIO determines the relative position of the moving assets or workers from the initial starting point. This relative position is transformed to an absolute position when AprilTag placed at various entry points is decoded. The proposed solution is tested on the NVIDIA ISAAC SIM virtual environment, where the trajectory of the indoor moving forklift is estimated. The results show accurate localization of the moving asset within any indoor or underground environment. The system can be utilized in various use cases to increase productivity and improve safety at construction sites, contributing towards 1) indoor monitoring of man machinery coactivity for collision avoidance and 2) precise real-time knowledge of who is doing what and where.

  • PDF

Stereo Semi-direct Visual Odometry with Adaptive Motion Prior Weights of Lunar Exploration Rover (달 탐사 로버의 적응형 움직임 가중치에 따른 스테레오 준직접방식 비주얼 오도메트리)

  • Jung, Jae Hyung;Heo, Se Jong;Park, Chan Gook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.6
    • /
    • pp.479-486
    • /
    • 2018
  • In order to ensure reliable navigation performance of a lunar exploration rover, navigation algorithms using additional sensors such as inertial measurement units and cameras are essential on lunar surface in the absence of a global navigation satellite system. Unprecedentedly, Visual Odometry (VO) using a stereo camera has been successfully implemented at the US Mars rovers. In this paper, we estimate the 6-DOF pose of the lunar exploration rover from gray images of a lunar-like terrains. The proposed algorithm estimates relative pose of consecutive images by sparse image alignment based semi-direct VO. In order to overcome vulnerability to non-linearity of direct VO, we add adaptive motion prior weights calculated from a linear function of the previous pose to the optimization cost function. The proposed algorithm is verified in lunar-like terrain dataset recorded by Toronto University reflecting the characteristics of the actual lunar environment.