• Title/Summary/Keyword: Stereo Satellite Images

Search Result 137, Processing Time 0.024 seconds

Positioning Accuracy Analysis of KOMPSAT-3 Satellite Imagery by RPC Adjustment (RPC 조정에 의한 KOMPSAT-3 위성영상의 위치결정 정확도 분석)

  • Lee, Hyoseong;Seo, Doochun;Ahn, Kiweon;Jeong, Dongjang
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_1
    • /
    • pp.503-509
    • /
    • 2013
  • The KOMPSAT-3 (Korea Multi-Purpose Satellite-3), was launched on May 18, 2012, is an optical high-resolution observation mission of the Korea Aerospace Research Institute and provides RPC(Rational Polynomial Coefficient) for ground coordinate determination. It is however need to adjust because RPC absorbs effects of interior-exterior orientation errors. In this study, to obtain the suitable adjustment parameters of the vendor-provided RPC of the KOMPSAT-3 images, six types of adjustment models were implemented. As results, the errors of two and six adjustment parameters differed approximately 0.1m. We thus propose the two parameters model, the number of control points are required the least, to adjust the KOMPSAT-3 R PC. According to the increasing the number of control points, RPC adjustment was performed. The proposed model with a control point particularly did not exceed a maximum error 3m. As demonstrated in this paper, the two parameters model can be applied in RPC adjustment of KOMPSAT-3 stereo image.

To Evaluate the Accuracy of DEMs Derived from the Various Spectral Bands of Color Aerial Photos (컬러항공사진의 밴드별 수치표고모형 정확도 평가)

  • Kim, Jin-Kwang;Hwang, Chul-Sue
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.1
    • /
    • pp.9-17
    • /
    • 2007
  • In this study, Digital Elevation Models (DEMs) were constructed from color images, grayscale images and each bands (Red, Green, Blue) of color image, and the accuracies of each DEMs were evaluated, And then, correlation coefficients between left and right images of each stereopairs were analyzed. The DEM can be constructed conventionally from the digital map and stereopair images using image matching. The image matching requires stereo satellite images or aerial photographs. In case of rotor aerial photographs, these are to be scanned in 3 bands (Red, Green, Blue). For this study, 5 types of images were acquired; color, grayscale, RED band, GREEN band, and BLUE band image. DEMs were constructed from 5 types of stereopair images and evaluated using elevation points of digital maps. In order to analyze the cause of various accuracies of each DEMs, the similarity between left and right images of each stereopairs were analyzed. Consequently, the accuracy of the DEM constructed from RED band images of color aerial photograph were proved best.

A Study on DEM Generation from Kompsat-3 Stereo Images (아리랑 3호 스테레오 위성영상의 DEM 제작 성능 분석)

  • Oh, Jae Hong;Seo, Doo Chun;Lee, Chang No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.1
    • /
    • pp.19-27
    • /
    • 2014
  • Kompsat-3 is an optical high-resolution earth observation satellite launched in May 2012. In addition to its 0.7m spatial resolution, Kompsat-3 is capable of in-track stereo acquisition enabling quality Digital Elevation Model(DEM) generation. Typical DEM generation procedure requires accurate control points well-distributed over the entire image region. But we often face difficult situations especially when the area of interests is oversea or inaccessible area. One solution to this is to use existing geospatial data even though they only cover a part of the image. This paper aimed to assess accuracy of DEM from Kompsat-3 with different scenarios including no control point, Rational Polynomial Coefficients(RPC) relative adjustment, and RPC adjustment with control points. Experiments were carried out for Kompsat-3 stereo data in USA. We used Digital Orthophoto Quadrangle(DOQ) and Shuttle Radar Topography Mission(SRTM) as control points sources. The generated DEMs are compared to a LiDAR DEM for accuracy assessment. The test results showed that the relative RPC adjustment significantly improved DEM accuracy without any control point. And comparable DEM could be derived from single control point from DOQ and SRTM, showing 7 meters of mean elevation error.

Stereo Semi-direct Visual Odometry with Adaptive Motion Prior Weights of Lunar Exploration Rover (달 탐사 로버의 적응형 움직임 가중치에 따른 스테레오 준직접방식 비주얼 오도메트리)

  • Jung, Jae Hyung;Heo, Se Jong;Park, Chan Gook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.6
    • /
    • pp.479-486
    • /
    • 2018
  • In order to ensure reliable navigation performance of a lunar exploration rover, navigation algorithms using additional sensors such as inertial measurement units and cameras are essential on lunar surface in the absence of a global navigation satellite system. Unprecedentedly, Visual Odometry (VO) using a stereo camera has been successfully implemented at the US Mars rovers. In this paper, we estimate the 6-DOF pose of the lunar exploration rover from gray images of a lunar-like terrains. The proposed algorithm estimates relative pose of consecutive images by sparse image alignment based semi-direct VO. In order to overcome vulnerability to non-linearity of direct VO, we add adaptive motion prior weights calculated from a linear function of the previous pose to the optimization cost function. The proposed algorithm is verified in lunar-like terrain dataset recorded by Toronto University reflecting the characteristics of the actual lunar environment.

Development of a Satellite Image Preprocessing System for Obtaining 3-D Positional Information -Focused on KOMPSAT and SPOT Imagery- (3차원 위치정보를 취득하기 위한 위성영상처리 시스템 개발 - KOMPSAT 및 SPOT영상을 중심으로 -)

  • 유환희;김동규;진경혁;우해인
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.19 no.3
    • /
    • pp.291-300
    • /
    • 2001
  • In this paper, we developed a Satellite Image Processing System for obtaining 3-D positional information which is composed of five process modules. As a procedure of them, the Data Process module is the procedure that reads and processes the header file to generate data files. and then calculates orbital parameters and sensor attitudes for obtaining of 3-D positional information with them. The 3D Process module is to calculate 3-D positional information and the Dialog Process module is to correct the time of image frame center using the single image or stereo images for implementing the 3D Process module. We expect to obtain 3-D positional information with the header file and minimum GCPs(1∼2 points) using this system efficiently and economically in comparison with existing commercial software packages.

  • PDF

A Semi-automated Method to Extract 3D Building Structure

  • Javzandulam, Tsend-Ayush;Kim, Tae-Jung;Kim, Kyung-Ok
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.3
    • /
    • pp.211-219
    • /
    • 2007
  • Building extraction is one of the essential issues for 3D city modelling. In recent years, high-resolution satellite imagery has become widely available and it brings new methodology for urban mapping. In this paper, we have developed a semi-automatic algorithm to determine building heights from monoscopic high-resolution satellite data. The algorithm is based on the analysis of the projected shadow and actual shadow of a building. Once two roof comer points are measured manually, the algorithm detects (rectangular) roof boundary automatically. Then it estimates a building height automatically by projecting building shadow onto the image for a given building height, counting overlapping pixels between the projected shadow and actual shadow, and finding the height that maximizes the number of overlapping pixels. Once the height and roof boundary are available, the footprint and a 3D wireframe model of a building can be determined. The proposed algorithm is tested with IKONOS images over Deajeon city and the result is compared with the building height determined by stereo analysis. The accuracy of building height extraction is examined using standard error of estimate.

A Study on the Utilization of Photoballoon System for Database Generation of Small Areas (소규모 지역의 자료기반 구축을 위한 Photoballoon 시스템의 활용에 관한 연구)

  • 이재기;조재호;최석근;이재동
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.11 no.2
    • /
    • pp.7-15
    • /
    • 1993
  • In order to generate database, we need to obtain speedy and corret topographic information according to requisite purpose. Generally methods to an acquisition of topographic information are available by the use of maps, satellite images, stereo models of aerophoto and so forth. But we must choose a optimal method in consideration of area of object region, spatial solution of image, required accuracy and economic. Therefore, this study aims at providing the establish method of efficient topographic data base of small object region by means of spatial layer techniques of geo-spatial information system and using acquisition of geo-information and production method of base map with photoballoon system to obtain topographic information for reasonable plan and design of object region which select a zone preparation of a collective village with small region. As a result of this study, we decided an f-stop and a shutter speed of camera to obtain accurate stereo model and were able to obtain stereo photography and topography for small region by using of photoballoon system through accuracy analysis according to change flight height and air base speedly and economically. We can establish the data base useable to efficient plan and design as existence map with overlay plan drawing.

  • PDF

Epipolar Resampling from Kompsat-2 and Kompsat-3 (아리랑 위성 2호와 3호를 이용한 이종 영상 간 에피폴라 영상 생성)

  • Song, Jeong-Heon;Oh, Jae-Hong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.4
    • /
    • pp.156-166
    • /
    • 2014
  • As of 2014, KARI (Korea Aerospace Research Institute) operates two high-resolution satellites such as Kompsat-2 and Kompsat-3. Kompsat-3 has capability of in-track stereo images acquisition but it is quite limited because the stereo mode lowers the spatial coverage in a trajectory. In this paper we analyze the epipolar geometry from the heterogeneous Kompsat-2 and Kompsat-3 image combination to epipolar resample them for 3D spatial data acquisition. The analysis was carried out using the piecewise approach with RPCs (Rational Polynomial Coefficients) and the result showed the parabolic epipolar curve pattern. We also concluded that the third order polynomial transformation is required for epipolar image resampling. The resampled image pair showed 1 pixel level of y-parallax and can be used for 3D display and digitizing.

A Study on Production of Digital Map Using QuickBird Imagery (QuickBird 영상을 이용한 수치지도 제작에 관한 연구)

  • Kang, Joon-Mook;Yoon, Hee-Cheon;Lee, Yong-Woong;Kim, Youn-Gwan;Youn, Kyung-Chul
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.357-360
    • /
    • 2007
  • Efficient extraction and update of imagery is a crucial element in establishing latest geospatial information in today's fast changing Information society. Provision of Quick Bird imagery, with 61cm resolution panchromatic imagery and 2.5m resolution multi-chromatic imagery is contributing greatly in the application field if high density geospatial information. This research have conducted digital plotting utilizing stereo images provided by QuickBird satellite and evaluated the accuracy through comparison and analysis with digital map results. It turned out that result has smaller error than standard deviation of scale of 1:5,000 set by the NGII. This proves that the production of digital map at scale of 1:5,000 is possible.

  • PDF

THE EFFECTS OF UNCERTAIN TOPOGRAPHIC DATA ON SPATIAL PREDICTION OF LANDSLIDE HAZARD

  • Park, No-Wook;Kyriakidis, Phaedon C.
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.259-261
    • /
    • 2008
  • GIS-based spatial data integration tasks have used exhaustive thematic maps generated from sparsely sampled data or satellite-based exhaustive data. Due to a simplification of reality and error in mapping procedures, such spatial data are usually imperfect and of different accuracy. The objective of this study is to carry out a sensitivity analysis in connection with input topographic data for landslide hazard mapping. Two different types of elevation estimates, elevation spot heights and a DEM from ASTER stereo images are considered. The geostatistical framework of kriging is applied for generating more reliable elevation estimates from both sparse elevation spot heights and exhaustive ASTER-based elevation values. The effects of different accuracy arising from different terrain-related maps on the prediction performance of landslide hazard are illustrated from a case study of Boeun, Korea.

  • PDF