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ABSTRACT GIS-based spatial data integration tasks have used exhaustive thematic maps generated from sparsely
sampled data or satellite-based exhaustive data. Due to a simplification of reality and error in mapping procedures, such
spatial data are usually imperfect and of different accuracy. The objective of this study is to carry out a sensitivity
analysis in connection with input topographic data for landslide hazard mapping. Two different types of elevation
estimates, elevation spot heights and a DEM from ASTER stereo images are considered. The geostatistical framework
of kriging is applied for generating more reliable elevation estimates from both sparse elevation spot heights and
exhaustive ASTER-based elevation values. The effects of different accuracy arising from different terrain-related maps

on the prediction performance of landslide hazard are illustrated from a case study of Boeun, Korea.
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1. INTRODUCTION

GIS-based spatial data integration tasks usually deal
with multiple spatial data sets as input data. Since several
multi-source spatial data are considered simultaneously,
different degrees of reliability and accuracy would affect
the final integration result. Thus, a sensitivity analysis for
their effects should be properly considered in data
integration tasks.

Topographic data including elevation and slope have
been regarded as one of important input data layers for
landslide hazard mapping. These elevation and slope
maps can be generated from various data types and
sources such as spot heights and contours. The elevation
map can be generated by interpolating these elevation
data types. Alternatively, aerial photographs or satellite-
based sterco images can be used to generate the elevation
map by applying digital photogrammetric techniques. No
matter the way in which such elevation estimates are
constructed, they are inherently uncertain and may affect
the associated slope values and further analyses.

In this paper, the effects of elevation estimates derived
from different sources on landslide hazard mapping are
investigated. Three different elevation estimates are
considered: 1) ground-based sparsely sampled spot height
data, 2) exhaustive elevation data derived from ASTER
sterco images, and 3) an integrated elevation data sets
which account for above two different sources of
elevation and was generated via geostatistical kriging.
Slope values are computed from elevation maps
constructed using different input data combinations and
the associated performances of landslide hazard mapping
is illustrated through a case study of Boeun, Korea.

2. STUDY AREA AND DATA SET

The present study was conducted at Boeun area, Korea,
which suffered heavy landslide damage following intense
rainfall event in 1998 (Lee et al., 2008). Among several
GIS layers constructed by Lee et al. (2008), a landslide
location map including 459 past landslides and an
elevation map generated from ASTER stereo images were
only considered to investigate the effects of terrain-
related variables on landslide hazard mapping. The
average elevation error reported in Lee et al. (2008) was
about 6.88m by comparison of a digital topographic map
at 1:25,000 scale. In addition, 1292 elevation spot height
points were extracted from the digital topographic map
and were regarded as hard elevation data.

3. CASE STUDY
3.1 Processing of Elevation Data

We first examined how strong elevation values from
ASTER were correlated with those at hard spot height
locations. A strong linear relationship was obtained (r ~
0.96). From this linear relationship between hard and soft
data, it might be expected that the integration of ASTER-
based elevation would result in the improvement of
accuracy of elevation values estimated at unsampled
locations.

As for the integration of sparsely sampled hard spot
height data with exhaustively sampled ASTER-based data,
kriging with an external drift (KED) was chosen among
various multivariate kriging algorithms. KED is an
extension of kriging to accommodate a trend model and a
smoothly varying secondary variable is used to derive the
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trend of the primary variable (Goovaerts, 1997). Unlike
simple kriging with varying local means (SKlm), the
unknown regression coefficients for modeling the linear
relationship between primary and secondary variables are
locally estimated through the kriging system with each
search neighbourhood (Goovaerts, 1997). Interested
reader should refer to Goovaerts (1997) for a detailed
description on KED.

For comparison purposes, elevation values at
unsampled locations were estimated through ordinary
kriging (OK) using only the 1292 spot height elevation
data (Figure 1). The OK-based elevation map shows
much smoother patterns of elevation values than those
from ASTER and KED, which is a typical characteristic
of kriging. Leave-one-out cross validation was carried out
to compare the prediction performances of OK and KED.
The integration of soft data which have a strong linear
relationship with the hard data lead to the improvement of
prediction performance in terms of root mean square error
(OK: 18.77 vs. KED: 13.99). This result means that
accounting for ASTER-based elevation data can
complement the sparsely sampled spot height observation
and thus improve the accuracy of elevation values
estimated at unsampled locations. For subsequent for
landslide hazard mapping purposes, three slope maps
were generated from three different elevation maps and
are shown in Figure 1.

3.2 Data Integration for Landslide Hazard Mapping

Land slide hazard maps were constructed by integrating
different elevation and slope maps shown in Figure 2 to
investigate the effects of different accuracy arising from
different terrain-related maps on the prediction
performance of future landslide hazard.

The integration method applied in this study is a
likelihood ratio model with empirical kernel density
estimation. The joint likelihood ratio values were
transformed into rank values to visualize relative hazard
levels in the study area (Figure 2). The overall patterns of
hazard levels in the three hazard maps are very similar to
those of slope values shown in Figure 1. Since the slope
patterns were computed from different sources of
elevation, it is anticipated that the prediction performance
associated with the resulting three hazard maps would be
different.

3.3 Validation Results

To quantitatively evaluate the prediction performance
of the three different landslide hazard maps shown in
Figure 3, a cross-validation approach based on random
spatial partitioning of past landslides was carried out. The
prediction rate curve (Chung and Fabbri, 1999) was
computed from relative hazard values at all landslide
locations as a quantitative prediction of landslides.

The cross-validation results based on different sources
of elevation are shown in Figure 3. The best prediction
performance was obtained from KED-based elevation and

slope. The map of elevation constructed using OK of spot
heights only showed the worst prediction rate values. If
the most hazardous 10% of the area is considered, then
about 24% of the landslides are located in the KED-based
landslide hazard map. In the case of ASTER- and OK-
based hazard maps, about 21% and 16% of landslides are
located in that area, respectively. By using elevation
estimates which can account for both sparsely sampled
hard spot heights and satellite-based soft elevation data,
more realistic topographic data with less uncertainty
could be generated and thus the best prediction
performance could be obtained. When considering that
ground-based field surveys are limited by the cost of
sampling and accessibility, soft information from remote
sensing data, which provides exhaustive information over
the area of interest, would be a useful information source
for thematic mapping

4. CONCLUSIONS

This paper has demonstrated that the integration of
elevation and slope maps derived from different sources
of data yielded different prediction performances for
landslide hazard mapping. The landslide hazard map
constructed by using the elevation and the associated
slope maps based on geostatistical integration of spot
heights and ASTER-based elevation resulted in the best
prediction performance. Landslide hazard mapping using
elevation and slope maps derived from the interpolation
of only sparse spot heights showed the worst prediction
performance.

ACKNOWLEDGEMENTS

This work was supported by the Korea Research
Foundation Grant funded by the Korean Government
(MOEHRD) (KRF-2007-611-C00003). The work of N.-
W. Park was partly supported by a grant(08KLSGC03)
from Cutting-edge Urban Development — Korean Land
Spatialization Research Project funded by Ministry of
Land, Transport and Maritime Affairs. The provision of
spatial data sets used in this work by Drs. Saro Lee and
Sung-Soon Lee at the Korea Institute of Geoscience and
Mineral Resources, Korea is gratefully acknowledged.

REFERENCES

Chung, C.F. and Fabbri, A.G., 1999. Probabilistic
prediction models for landslide hazard mapping.
Photogrammetric Engineering & Remote Sensing, 65(12),
pp-1389-1399.

Goovaerts, P., 1997. Geostatistics for Natural Resources
Evaluation. Oxford University Press, New York.

Lee, S., Oh, H.J,, Park, N.W., and Lee, S.S., 2008.
Extraction of landslide-related factors from ASTER
imagery and its application to landslide susceptibility
mapping using GIS. Geomorphology, under revision.

- 260 -



Figure 1. Elevation and slope maps derived from three different sources of elevation (left: OK of spot heights,
middle: ASTER, right: KED of spot heights and ASTER elevation, upper: elevation, lower: slope)
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Figure 2. Landslide hazard map based on elevation and slope, from: (left) OK of spot heights, (middle) ASTER,
(right) KED of spot heights and ASTER elevation.
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Figure 3. Prediction rate curve based on random partitioning of past landslides.
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