• Title/Summary/Keyword: Stereo Satellite Data

Search Result 95, Processing Time 0.022 seconds

A Study on the Generation of Digital Elevation Model from IRS-1C Satellite Image Data (IRS-1C 위성데이타를 이용한 수치표고모델 생성에 관한 연구)

  • 안기원;이효성;서두천;신석효
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.17 no.3
    • /
    • pp.293-300
    • /
    • 1999
  • The study aims to develope techniques for generating digital elevation model(DEM) from IRS-1C PAN stereo image data. The bundle adjustment technique was used to determine the satellite exterior orientation parameters as a function of along-track lines. The first degree of polynomial was selected as a function of satellite attitude and position for each scan line. To evaluate the DEM and orthoimage generated, the resulted three dimensional coordinates of the 16 elevation points were computed with the map coordinates. The elevation test showed that root mean square errors of the DEM elevation was about $\pm{16.66m}$ meters.

  • PDF

Acquisition of Geographic Information in North Korea Using High Resolution Satellite Image (고해상도 위성영상을 이용한 북한지역 지리정보 구축 실험연구)

  • SaGong, Hosang;Han, Sun-Hee;Park, Jin-Hyeong;Seo, Ki-Hwan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.4
    • /
    • pp.46-56
    • /
    • 2004
  • As economic cooperation and exchanges between North and South Korea have been glowing much more than before, the demand for geographic information on North Korea is recently increasing. In fact, there is no specific method to be provided with geographic information on North Korea. In this regard, the study searched a method to collect geographic information on North Korea by using the high spatial resolution satellite image. In order to produce its best result, the study collected the geographic information on the case study area and ensured the location accuracy. This study produced total 52 items of geographic information on North Korea. Horizontal and vertical errors of stereo image, which are 4.6m and 0.9m respectively, showed high accuracy. In addition, even though the horizontal error of single image is 9m, which is bigger than that of stereo image, there is no doubt that it can be used as basic data for North Korean studies and related projects.

  • PDF

A Study on DEM Generation from Kompsat-3 Stereo Images (아리랑 3호 스테레오 위성영상의 DEM 제작 성능 분석)

  • Oh, Jae Hong;Seo, Doo Chun;Lee, Chang No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.1
    • /
    • pp.19-27
    • /
    • 2014
  • Kompsat-3 is an optical high-resolution earth observation satellite launched in May 2012. In addition to its 0.7m spatial resolution, Kompsat-3 is capable of in-track stereo acquisition enabling quality Digital Elevation Model(DEM) generation. Typical DEM generation procedure requires accurate control points well-distributed over the entire image region. But we often face difficult situations especially when the area of interests is oversea or inaccessible area. One solution to this is to use existing geospatial data even though they only cover a part of the image. This paper aimed to assess accuracy of DEM from Kompsat-3 with different scenarios including no control point, Rational Polynomial Coefficients(RPC) relative adjustment, and RPC adjustment with control points. Experiments were carried out for Kompsat-3 stereo data in USA. We used Digital Orthophoto Quadrangle(DOQ) and Shuttle Radar Topography Mission(SRTM) as control points sources. The generated DEMs are compared to a LiDAR DEM for accuracy assessment. The test results showed that the relative RPC adjustment significantly improved DEM accuracy without any control point. And comparable DEM could be derived from single control point from DOQ and SRTM, showing 7 meters of mean elevation error.

A Study on the Generation of 3 Dimensional Graphic Files Using SPOT Imagery (SPOT 위성영상을 이용한 3차원 그래픽 화일 생성연구)

  • Cho, Bong-Whan;Lee, Yong-Woong;Park, Wan-Yong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.3 no.1 s.5
    • /
    • pp.79-89
    • /
    • 1995
  • Using SPOT satellite imagery, 3 dimensional geographic information can be obtained from SPOT's oblique viewing image. Especially, SPOT provides high spatial resolution, adequate base/height ratio and stable orbit characteristics. In this paper, 3D terrain features were extracted using SPOT stereo image and also the techniques for generation of 3D graphic data were developed for the extracted terrain features. We developed computer programs to generate automatically 3D graphic files and to display geographic information on the computer screen, The results of this study may be effectively utilized for the development of 3D geographic information using satellite images.

  • PDF

A Study on the Generation of 3 Dimensional Graphic Files Using SPOT Imagery (SPOT위성영상정보를 이용한 3차원 그래픽 화일 생성연구)

  • Cho, Bong-Hwan;Lee, Yong-Woong;Park, Wan-Yong
    • 한국지형공간정보학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.121-142
    • /
    • 1995
  • Using SPOT satellite imagery, 3 dimensional geographic information can be obtained from SPOT's oblique viewing image. Especially, SPOT provides high spatial resolution, adequate base/height ratio and stable orbit characteristics. In this paper, 3D terrain features were extracted using SPOT stereo image and also the techniques for generation of 3D graphic data were developed for the extracted terrain features. We developed computer programs to generate automatically 3D graphic files and to display geographic information on the computer screen. The results of this study may be effectively utilized for the development of 3D geographic information using satellite images.

  • PDF

A Study on Determination of the Matching Size of IKONOS Stereo Imagery (IKONOS 스테레오 영상의 매칭사이즈 결정연구)

  • Lee, Hyo-Seong;Ahn, Ki-Weon;Lee, Chang-No;Seo, Doo-Cheon
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.201-205
    • /
    • 2007
  • In the post-Cold War era, acquisition technique of high-resolution satellite imagery (HRSI) has begun to commercialize. IKONOS-2 satellite imaging data is supplied for the first time in the 21st century. Many researchers testified mapping possibility of the HRSI data instead of aerial photography. It is easy to renew and automate a topographical map because HRSI not only can be more taken widely and periodically than aerial photography, but also can be directly supplied as digital image. In this study matching size of IKONOS Geo-level stereo image is presented lot production of digital elevation model (DEM). We applied area based matching method using correlation coefficient of pixel brightness value between the two images. After matching line (where "matching line" implies straight line that is approximated to complex non-linear epipolar geometry) is established by exterior orientation parameters (EOPs) to minimize search area, the matching is tarried out based on this line. The experiment on matching size is performed according to land cover property, which is divided off into four areas (water, urban land, forest land and agricultural land). In each of the test areas, window size for the highest correlation coefficient is selected as propel size for matching. As the results of experiment, the proper size was selected as $123{\times}123$ pixels window, $13{\times}13$ pixels window, $129{\times}129$ pixels window and $81{\times}81$ pixels window in the water area, urban land, forest land and agricultural land, respectively. Of course, determination of the matching size by the correlation coefficient may be not absolute appraisal method. Optimum matching size using the geometric accuracy therefore, will be presented by the further work.

  • PDF

Antarctic DEMs Generation Using KOMPSAT-3A Stereo Images and Comparison by DEM Matching (KOMPSAT-3A 입체영상을 이용한 남극 DEM 제작과 DEM 매칭에 의한 두 시기의 DEM 비교)

  • Lee, Hyoseong;Hwang, Hobin;Seo, Doochun;Ahn, Kiweon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.3
    • /
    • pp.167-174
    • /
    • 2017
  • Antarctica, where ice sheet has been declined rapidly, should be monitored periodically. However, there are difficult to access for local survey or aircraft observation due to the vast and extreme environments of the polar regions. In order to overcome this problem, there have been a lot of studies by acquiring radar or laser data by satellite. It is also difficult to accurately measure the changes of the surface where is composed of snow or ice layer, and it is also difficult to product a high-resolution DEM. This study therefore aims to product DEMs of two periods using high-resolution KOMPSAT-3A stereo images, and DEM matching is implemented by the LZD(Least-squares Z-Differences) method to detect DEM changes in both periods. As a result, the proposed method could be suggested as comparing height differences of the two DEMs within 1m precision.

A Method of DTM Generation from KOMPSAT-3A Stereo Images using Low-resolution Terrain Data (저해상도 지형 자료를 활용한 KOMPSAT-3A 스테레오 영상 기반의 DTM 생성 방법)

  • Ahn, Heeran;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_1
    • /
    • pp.715-726
    • /
    • 2019
  • With the increasing prevalence of high-resolution satellite images, the need for technology to generate accurate 3D information from the satellite images is emphasized. In order to create a digital terrain model (DTM) that is widely used in applications such as change detection and object extraction, it is necessary to extract trees, buildings, etc. that exist in the digital surface model (DSM) and estimate the height of the ground. This paper presents a method for automatically generating DTM from DSM extracted from KOMPSAT-3A stereo images. The technique was developed to detect the non-ground area and estimate the height value of the ground by using the previously constructed low-resolution topographic data. The average vertical accuracy of DTMs generated in the four experimental sites with various topographical characteristics, such as mountainous terrain, densely built area, flat topography, and complex terrain was about 5.8 meters. The proposed technique would be useful to produce high-quality DTMs that represent precise features of the bare-earth's surface.

The Investigation of disaster damage using digital cameras (디지털 카메라를 이용한 재난피해정보 추출)

  • Kim Gi-Hong;Kim Hyung-Kyung;Hong Sung-Chang
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2006.05a
    • /
    • pp.152-157
    • /
    • 2006
  • Satellite imagery is generally used for investigating the damage from natural disaster for wide area and remotely piloted vehicle or aerial photos are used for the local damage. But for more detailed information such as damages of public facilities, these methods are inadequate and so in this case field surveying has been carried out. We tried to estimate the damage of public facilities faster and more accurately using photogrammetric method. We developed a digital stereo camera system by fixing two digital cameras on a frame, and with this system the photos of actually damaged areas were collected. The damages were estimated from these stereo photos. Then the estimated data was compared with field surveying data in order to verify our system.

  • PDF

A Wide DEM Generation Based on Orthoretification and DEM Data Fusion (직각정규화와 DEM 자료 융합을 이용한 광역 DEM 생성)

  • 예철수;전병민;이쾌희
    • Korean Journal of Remote Sensing
    • /
    • v.16 no.1
    • /
    • pp.99-108
    • /
    • 2000
  • The purpose of this paper is to combine digital elevation models (DEM) using SPOT satellite stereo images. After DEM extraction, a grid of longitude and latitude is generated using the results of DEM extraction. Heights at each grid location are determined from the obtained DEMs by using triangular image warping interpolation that uses the heights of the three nearest neighbors. The final heights at each grid location can then be determined by using the maximum likelihood as a fusion strategy. The input images used in this paper are two pairs of SPOT stereo images and experiments show that heights of DEM are successfully fused