본 연구에서는 여러 장의 무인항공기 영상을 사용하여 대상지역에 대한 포인트 클라우드를 생성하고, 데이터 세트 간 발생하는 이격과 중복점을 제거하는 방안에 대한 연구를 수행하였다. 이를 위해 사진 측량 기반의 IBA(Incremental Bundle Adjustment)기법을 적용하여 무인기의 위치/자세를 보정하고 스테레오 페어를 구성했다. 각각의 스테레오 영상으로부터 에피폴라 영상을 생성하고 MDR(Multi-Dimensional Relaxation) 정합 기법을 적용하여 포인트 클라우드를 생성하였다. 다음으로 스테레오 영상 간 관측 벡터에 기반한 포인트 클라우드 등록을 통해 서로 다른 스테레오 페어로부터 생성된 포인트 클라우드 간 이격을 제거하였다. 마지막으로 점유격자(Occupancy grid) 기반 통합 알고리즘을 적용하여 중복점이 제거된 하나의 포인트 클라우드를 생성하였다. 실험은 무인항공기에서 취득된 연직 촬영 영상을 사용하였으며, 실험을 통해 서로 다른 스테레오 페어로부터 생성된 포인트 클라우드 간 이격 및 중복점 제거가 가능함을 확인하였다.
본 논문에서는 지능적인 경로 계획을 위한 스테레오 카메라 기반의 공간좌표 검출 기법을 이용한 자율 이동 로봇 시스템을 제안하였다. 우선 스테레오 카메라로부터 입력된 영상 중 좌 영상에 YCbCr 컬러 모델 및 무게 중심법을 이용하여 이동중인 보행자의 얼굴 영역과 중심좌표를 검출하고, 검출된 좌표 값에 따라 스테레오 카메라의 능동적인 로봇 제어를 통해 이동하는 보행자를 실시간적으로 검출하게 된다. 다음으로, 로봇구동에 의해 추적 제어된 스테레오 카메라의 좌, 우 영상간의 시차정보와 스테레오 카메라 내부 변환관계를 통해 깊이 정보를 검출한 후, 검출된 깊이 지도로부터 각 열에 존재하는 최소값을 이용한 2차원 공간좌표를 검출하여 이동 로봇과 보행자간의 거리와 위치좌표는 물론 다른 물체들과의 상대 거리를 산출하게 되며, 산출된 위치 좌표를 토대로 이동 로봇의 지능적인 경로 추정 및 판단에 따라 자율적인 주행을 수행하게 된다. 실시간적으로 입력되는 240 프레임의 스테레오 영상을 사용한 실험결과, 이동 로봇과 전방에 존재하는 장애물간의 거리 및 보행자와 장애물간 상대거리의 계산치와 측정치간의 오차가 평균 $2.19\%$와 $1.52\%$이하로 각각 유지됨으로써 경로 계획을 위한 공간좌표 검출에 기반을 둔 실질적인 이동 로봇 시스템의 구현 가능성을 제시하였다.
Using stereo images with ephemeris data from the Korea Multi-Purpose Satellite-1 electro-optical camera (KOMPSAT-1 EOC), we performed geometric modeling for three-dimensional (3-D) positioning and evaluated its accuracy. In the geometric modeling procedures, we used ephemeris data included in the image header file to calculate the orbital parameters, sensor attitudes, and satellite position. An inconsistency between the time information of the ephemeris data and that of the center of the image frame was found, which caused a significant offset in satellite position. This time inconsistency was successfully adjusted. We modeled the actual satellite positions of the left and right images using only two ground control points and then achieved 3-D positioning using the KOMPSAT-1 EOC stereo images. The results show that the positioning accuracy was about 12-17 m root mean square error (RMSE) when 6.6 m resolution EOC stereo images were used along with the ephemeris data and only two ground control points (GCPs). If more accurate ephemeris data are provided in the near future, then a more accurate 3-D positioning will also be realized using only the EOC stereo images with ephemeris data and without the need for any GCPs.
점유맵은 3차원 공간상에서 장애물이 놓인 부분과 빈 공간을 구분해서 2차원 평면상에 표현하는 방식으로 자율 내비게이션이나 물체 인식 등을 위해 사용된다. 본 논문에서는 스테레오 영상에서 추출된 깊이 정보를 활용하여 3차원 공간의 점유맵을 구축하고 그 정보를 물체 영역 추출에 활용하는 기법을 제안한다. 스테레오 깊이 영상에서 기반 평면을 추출한 다음, 각 정합점들을 기반 평면 중심 좌표계로 투사하여 점유맵을 추출한다. 본 연구에서는 이렇게 추출된 점유맵을 활용하여 실내외의 다양한 환경에서 움직임 물체 영역을 추출하였는데, 실제 실험 영상을 홍해 제안된 방식의 유용성을 확인한다.
Photogrammetry is a current method of GIS data acquisition. However, as a matter of fact, a large manpower and expenditure for making detailed 3D spatial information is required especially in urban areas where various buildings exist. There are no photogrammetric systems which can automate a process of spatial information acquisition completely. On the other hand, LiDAR has high potential of automating 3D spatial data acquisition because it can directly measure 3D coordinates of objects, but it is rather difficult to recognize the object with only LiDAR data, for its low resolution at this moment. With this background, we believe that it is very advantageous to integrate LiDAR data and stereo CCD images for more efficient and automated acquisition of the 3D spatial data with higher resolution. In this research, the automatic urban object recognition methodology was proposed by integrating ultra highresolution stereo images and LiDAR data. Moreover, a method to enable more reliable and detailed stereo matching method for CCD images was examined by using LiDAR data as an initial 3D data to determine the search range and to detect possibility of occlusions. Finally, intellectual DSMs, which were identified urban features with high resolution, were generated with high speed processing.
Vegetation classes, especially grass and tree classes, are often confused in classification when conventional spectral pattern recognition techniques are used to classify urban areas. This paper reports on a study to improve the classification results by using an automated process of considering height information in separating urban vegetation classes, specifically tree and grass, using three-band, high-spatial resolution, digital aerial imagery. Height information was derived photogrammetrically from stereo pair imagery using cross correlation image matching to estimate differential parallax for vegetation pixels. A threshold value of differential parallax was used to assess whether the original class was correct. The average increase in overall accuracy for three test stereo pairs was $7.8\%$, and detailed examination showed that pixels reclassified as grass improved the overall accuracy more than pixels reclassified as tree. Visual examination and statistical accuracy assessment of four test areas showed improvement in vegetation classification with the increase in accuracy ranging from $3.7\%\;to\;18.1\%$. Vegetation classification can, in fact, be improved by adding height information to the classification procedure.
본 논문에서는 스테레오 매칭 시 발생하는 신뢰도가 낮은 부분을 컬러와 명도의 다중 임계값에 기반한 영상 분할 기법을 통해 보정하는 방법을 제안한다. 스테레오 매칭은 좌측 영상 위의 한 점과 대응하는 점을 우측 영상에서 찾는 과정이며, 이를 통해 스테레오 영상 내에서 거리 정보를 복원할 수 있다. 하지만 영상 내 특징이 불분명한 부분의 경우, 스테레오 매칭의 신뢰도가 낮기 때문에 Bad Pixel이 발생하게 된다. 제안하는 방법에서는 Bad Pixel을 보정하기 위해서 각 픽셀의 연관성을 고려하고자 한다. 일반적으로 동일한 물체는 비슷한 색상과 명도를 가진다. 따라서 컬러와 명도의 다중 임계값에 의해 각각 분할된 영역을 통해 영역 간의 연관성을 고려하여, 동일한 물체로 판단되는 부분을 재분할한다. 이후 분할된 픽셀들의 관계 정보에 따라 디스패리티 맵의 Bad Pixel을 보정하였다. 실험 결과, 제안하는 방법을 통해 기존 방법의 결과에서 Bad Pixel이 28% 감소함을 확인하였다.
전처리는 영상의 질을 개선하거나 영상을 특정한 응용 목적에 알맞도록 변환시키는 등의 영상 처리를 의미한다. Depth 카메라로부터 획득한 화소단위의 8비트 깊이 정보 (depth map) 에는 depth 카메라의 특성상 잡음으로 생각할 수 있는 많은 성분들이 포함되어 있고, RGB 정보에서의 윤곽선에 비해 물체의 특성이나 조명 조건에 의해서 왜곡되어 나타난다. 일반적으로 잡음 제 거 필터가 사용되지만, 이는 깊이 정보 내의 잡음만을 줄이는 역할을 하기 때문에 깊이 정보의 왜곡된 윤곽선 처리는 하지 못 하고 있다. 본 논문에서는 깊이 정보의 잡음을 줄이는 동시에 RGB 정보의 윤곽선을 이용하여 깊이 정보의 왜곡된 윤곽선을 개선하는 알고리즘을 제안함으로써 다시점 입체 영상 생성 시 오차를 줄이고자 한다.
본 논문에서는 입력된 2차원 정지영상에 차등적 이동기법을 적용한 스테레오스코픽 3차원 입체영상 변환 기법을 제안하였다. 즉. 입력된 2차원 영상에서 시차 및 폐색 정보를 이용하여 상대적인 거리 정보를 예측하고, 예측된 정보를 바탕으로 영상 객체들을 명암 레벨에 따라 분할한 다음, 분할된 각 영상은 수평 시차에 따라 차등적으로 영역을 이동시킴으로써 최적의 입체감을 갖는 스테레오 3 타원 입체 영상을 구현하였다. 그리고, 입력 영상과 재구성된 영상간의 PSNR 비교실험 결과 시차에서 약 1.6dB정도 향상됨을 확인하였고, 상용 스테레오 뷰어를 통한 실험결과에서는 4∼5 픽셀 범위의 영역이동으로 재구성된 스테레오 영상들에서 가장 높은 입체감을 보이는 것을 확 인하였다.
자기공명영상은 뛰어난 해상도의 해부학적 구조 정보를 제공하여 임상적인 외과수술에 매우 유용하게 적용되고 있다. 영상처리 기법과 MRI 영상유도기법을 이용한 뇌수술은 외과 전문의에게 많은 도움을 줄 수 있다. 본 논문에서는 스테레오 매칭 기법을 이용하여 중재적 시술이 가능한 유도영상시술 시스템의 개발에 관하여 소개하였다. 생검을 수행하기 위하여, MRI 마커, 카메라 마커, 탐침 프로브 마커를 정밀하게 제작하였고 시스템의 정확성을 입증하기 위하여 팬텀을 제작하였다. 제작된 마커와 팬텀을 이용하여 1.5 Tesla MRI 시스템으로 실험을 수행하였다. 구현된 시스템의 오차범위는 팬텀 실험에서 약 1.5%였고, 동물실험에서는 오차가 3mm 이내로 임상적용이 가능한 수준임을 착인하였다. 본 연구에서 제시한 스테레오 매칭기법을 이용한 유도영상시술 시스템은 기존의 방법보다 우수한 성능을 보여주었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.