• Title/Summary/Keyword: Stereo Graphics

Search Result 32, Processing Time 0.036 seconds

A Study on Stereo Image (Stereopsis) (스테레오 이미지에 관한 연구)

  • 홍석일
    • Archives of design research
    • /
    • v.12 no.3
    • /
    • pp.191-200
    • /
    • 1999
  • The purpose of this study is to analyze traditional stereo images (stereopsis), and study electronic methods to create stereo images using computer graphics technology on visualization of computer. Computer system can process image data and show results on its display. In the early days of computer era, most scientific research data was printed on paper as a procession of digits. These days, the visualization of computer graphics has a precise and realistic quality in its imaging technology. Some technological advances have been developed to not only display 2-dimensional geometry but also 3-dimensional stereo images to simulate virtual reality. In this study, [ have discussed the history of stereopsis, principles of stereo images and technological developments. Also I analyzed the components of stereo images, optical and electronic methods and visual systems which are used in computer graphics technology. I developed my own theories on possibilities for new methods of 3-dimensional stereo images.

  • PDF

GPU-Based Optimization of Self-Organizing Map Feature Matching for Real-Time Stereo Vision

  • Sharma, Kajal;Saifullah, Saifullah;Moon, Inkyu
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.2
    • /
    • pp.128-134
    • /
    • 2014
  • In this paper, we present a graphics processing unit (GPU)-based matching technique for the purpose of fast feature matching between different images. The scale invariant feature transform algorithm developed by Lowe for various feature matching applications, such as stereo vision and object recognition, is computationally intensive. To address this problem, we propose a matching technique optimized for GPUs to perform computations in less time. We optimize GPUs for fast computation of keypoints to make our system quick and efficient. The proposed method uses a self-organizing map feature matching technique to perform efficient matching between the different images. The experiments are performed on various image sets to examine the performance of the system under varying conditions, such as image rotation, scaling, and blurring. The experimental results show that the proposed algorithm outperforms the existing feature matching methods, resulting in fast feature matching due to the optimization of the GPU.

A Method for Reproducing Stereo Images to Adjust Screen Parallax on a 3D Display (3D 디스플레이에서의 화면 시차 제어를 위한 입체 영상재생성 기법)

  • Rhee, Seon-Min;Choi, Jong-Moo;Choi, Soo-Mi
    • Journal of the Korea Computer Graphics Society
    • /
    • v.16 no.4
    • /
    • pp.1-10
    • /
    • 2010
  • We present a method to reproduce in-between views from captured stereo images to control depth feeling that a user can perceive on a 3D display. The stereo images captured from a pair of cameras have a fixed viewpoint and a screen parallax which depend on the physical position and the distance between the cameras. In this paper, we produce stereo images of an intermediate viewpoint between two original cameras by a view interpolation on the input stereo images. Furthermore, the camera separation of the reproduced stereo images can be controlled by a linear interpolation coefficient used by the view interpolation. By using the proposed method, stereo images can be reproduced where the depth feeling and a three dimensional effect is suitable for the individual's eye separation or the characteristic of an application.

The User Interface of Button Type for Stereo Video-See-Through (Stereo Video-See-Through를 위한 버튼형 인터페이스)

  • Choi, Young-Ju;Seo, Young-Duek
    • Journal of the Korea Computer Graphics Society
    • /
    • v.13 no.2
    • /
    • pp.47-54
    • /
    • 2007
  • This paper proposes a user interface based on video see-through environment which shows the images via stereo-cameras so that the user can control the computer systems or other various processes easily. We include an AR technology to synthesize virtual buttons; the graphic images are overlaid on the captured frames taken by the camera real-time. We search for the hand position in the frames to judge whether or not the user selects the button. The result of judgment is visualized through changing of the button color. The user can easily interact with the system by selecting the virtual button in the screen with watching the screen and moving her fingers at the air.

  • PDF

Multi-Screen Virtual Reality System : VROOM - Hi-Resolution and four-screen Stereo Image Projection System -

  • NAKAJIMA, Masayuki;TAKAHASHI, Hiroki
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1997.06a
    • /
    • pp.95-100
    • /
    • 1997
  • In this paper, we report a system specifications of Hi-resolution and four-screen stereo image projection system which was established in VBL(Venture Business Laboratory) at Tokyo Institute of Technology on 3rd July 1996. The system is 3m $\times$ 3m $\times$2.2m rectangular parallelepiped composed of three 150inch side screens and floor. Host computers can generate virtual environment s in real-time and four projecters project these images to the screens. Viewers are, therefore, surrounded by these screens and an illusion of immersion can be created. Because, the views of users are completely covered with the projection images and many kinds of interactive devices can be used in this system. Moreover, many users can have experience the virtual environments at the same time. Usually, this kind of system uses hi-performance graphics workstations for host computers. One is SGI(Silicon Graphics, Inc.) Onyx with 3 Reality Engines. The other system is 4 personal computers. Because hi-performance and low price graphics accelerators for personal computer have been developed in these years, the abilities of VR(Virtual Reality) systems based on personal computers should be investigated.

  • PDF

DEVELOPMENT OF AUGMENTED 3D STEREO URBAN CITY MODELLING SYSTEM BASED ON ANAGLYPH APPROACH

  • Kim, Hak-Hoon;Kim, Seung-Yub;Lee, Ki-Won
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.98-101
    • /
    • 2006
  • In general, stereo images are widely used to remote sensing or photogrametric applications for the purpose of image understanding and feature extraction or cognition. However, the most cases of these stereo-based application deal with 2-D satellite images or the airborne photos so that its main targets are generation of small-scaled or large-scaled DEM(Digital Elevation Model) or DSM(Digital Surface Model), in the 2.5-D. Contrast to these previous approaches, the scope of this study is to investigate 3-D stereo processing and visualization of true geo-referenced 3-D features based on anaglyph technique, and the aim is at the prototype development for stereo visualization system of complex typed 3-D GIS features. As for complex typed 3-D features, the various kinds of urban landscape components are taken into account with their geometric characteristics and attributes. The main functions in this prototype are composed of 3-D feature authoring and modeling along with database schema, stereo matching, and volumetric visualization. Using these functions, several technical aspects for migration into actual 3-D GIS application are provided with experiment results. It is concluded that this result will contribute to more specialized and realistic applications by linking 3-D graphics with geo-spatial information.

  • PDF

A Novel Horizontal Disparity Estimation Algorithm Using Stereoscopic Camera Rig

  • Ramesh, Rohit;Shin, Heung-Sub;Jeong, Shin-Il;Chung, Wan-Young
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.1
    • /
    • pp.83-88
    • /
    • 2011
  • Abstract. Image segmentation is always a challenging task in computer vision as well as in pattern recognition. Nowadays, this method has great importance in the field of stereo vision. The disparity information extracting from the binocular image pairs has essential relevance in the fields like Stereoscopic (3D) Imaging Systems, Virtual Reality and 3D Graphics. The term 'disparity' represents the horizontal shift between left camera image and right camera image. Till now, many methods are proposed to visualize or estimate the disparity. In this paper, we present a new technique to visualize the horizontal disparity between two stereo images based on image segmentation method. The process of comparing left camera image with right camera image is popularly known as 'Stereo-Matching'. This method is used in the field of stereo vision for many years and it has large contribution in generating depth and disparity maps. Correlation based stereo-matching are used most of the times to visualize the disparity. Although, for few stereo image pairs it is easy to estimate the horizontal disparity but in case of some other stereo images it becomes quite difficult to distinguish the disparity. Therefore, in order to visualize the horizontal disparity between any stereo image pairs in more robust way, a novel stereo-matching algorithm is proposed which is named as "Quadtree Segmentation of Pixels Disparity Estimation (QSPDE)".

3D geometric model generation based on a stereo vision system using random pattern projection (랜덤 패턴 투영을 이용한 스테레오 비전 시스템 기반 3차원 기하모델 생성)

  • Na, Sang-Wook;Son, Jeong-Soo;Park, Hyung-Jun
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.848-853
    • /
    • 2005
  • 3D geometric modeling of an object of interest has been intensively investigated in many fields including CAD/CAM and computer graphics. Traditionally, CAD and geometric modeling tools are widely used to create geometric models that have nearly the same shape of 3D real objects or satisfy designers intent. Recently, with the help of the reverse engineering (RE) technology, we can easily acquire 3D point data from the objects and create 3D geometric models that perfectly fit the scanned data more easily and fast. In this paper, we present 3D geometric model generation based on a stereo vision system (SVS) using random pattern projection. A triangular mesh is considered as the resulting geometric model. In order to obtain reasonable results with the SVS-based geometric model generation, we deal with many steps including camera calibration, stereo matching, scanning from multiple views, noise handling, registration, and triangular mesh generation. To acquire reliable stere matching, we project random patterns onto the object. With experiments using various random patterns, we propose several tips helpful for the quality of the results. Some examples are given to show their usefulness.

  • PDF

Multiview Stereo Matching on Mobile Devices Using Parallel Processing on Embedded GPU (임베디드 GPU에서의 병렬처리를 이용한 모바일 기기에서의 다중뷰 스테레오 정합)

  • Jeon, Yun Bae;Park, In Kyu
    • Journal of Broadcast Engineering
    • /
    • v.24 no.6
    • /
    • pp.1064-1071
    • /
    • 2019
  • Multiview stereo matching algorithm is used to reconstruct 3D shape from a set of 2D images. Conventional multiview stereo algorithms have been implemented on high-performance hardware due to the heavy complexity that contains a large number of calculations in each step. However, as the performance of mobile graphics processors has recently increased rapidly, complex computer vision algorithms can now be implemented on mobile devices like a smartphone and an embedded board. In this paper we parallelize an multiview stereo algorithm using OpenCL on mobile GPU and provide various optimization techniques on the embedded hardware with limited resource.

Stereo vision mixed reality system using the multi-blob marker (다중 블럽 마커를 이용한 스테레오 비전 혼합현실 시스템의 구현)

  • 양기선;김한성;손광훈
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.1907-1910
    • /
    • 2003
  • This paper describes a method of stereo image composition for mixed reality without camera calibration or complicate tracking algorithm. The proposed system tracks the panel which has blob makers, and composes virtual objects naturally using the method of texture mapping which is often used in geological computer graphics mapping when we do mapping 2D computer graphic data or man-made 2D images. The proposed algorithm makes it possible for us to compose virtual data even in the case that the panel is bent. For composing 3D object, the system uses depth information obtained from stereo image so that we do not need cumbersome procedure of camera calibration.

  • PDF