• Title/Summary/Keyword: Stepping model

Search Result 171, Processing Time 0.029 seconds

Convergence Study of the Multigrid Navier-Stokes Simulation : II. Implicit Preconditioners (다중 격자 Navier-Stokes 해석을 위한 수렴 특성 연구 : II. 내재적 예조건자)

  • Kim, Yoon-Sik;Kwon, Jang-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.6
    • /
    • pp.1-8
    • /
    • 2004
  • The objective of this study is convergence acceleration of multigrid Navier-Stokes solvers. This study has been performed to enhance the performance of preconditioned multi-stage time stepping method which is a popular smoother for the multigrid Navier-Stokes solvers. Comparative study on the convergence characteristics of the ADI and DDADI preconditioners has been conducted. It is shown that the DDADI preconditioner has better performance than the ADI by numerical tests on the 2-D compressible turbulent flows past airfoils. The Spalart-Allmaras turbulent model and the Baldwin-Lomax turbulent model have been compared with the multigrid calculations.

Prediction of Longitudinal and Directional Stability Derivatives for the SDM using Forced Harmonic Oscillation (강제조화운동을 이용한 SDM의 세로 및 방향 안정성 미계수 예측)

  • Lee, Hyungro;Lee, Seungsoo;Joh, Chang-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.11
    • /
    • pp.948-956
    • /
    • 2012
  • This paper presents the computations of the longitudinal and directional stability derivatives for the SDM(Standard Dynamic Model). The static and dynamic derivatives are evaluated at once using forced harmonic oscillations in the pitch and yaw directions. For the numerical simulations, a 3-D Euler solver that uses a dual time stepping method for unsteady time accurate simulations is applied. This work investigates the variation of the derivatives in terms of the Mach number and the several motion parameters. Good agreement of the pitch and yaw stability derivatives with previously published numerical results and experimental results are observed.

NUMERICAL SIMULATIONS OF TWO DIMENSIONAL INCOMPRESSIBLE FLOWS USING ARTIFICIAL COMPRESSIBILITY METHOD (가상 압축성 기법을 이용한 이차원 비압축성 유동의 수치모사)

  • Lee, H.R.;Yoo, I.Y.;Kwak, E.K.;Lee, S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.389-396
    • /
    • 2010
  • In this paper, a new computational code was developed using Chorin's artificial compressibility method to solve the two-dimensional incompressible Navier-Stokes equations. In spatial derivatives, Roe's flux difference splitting was used for the inviscid flux, while central differencing was used for the viscous flux. Furthermore, AF-ADI with dual time stepping method was implemented for accurate unsteady computations. Two-equation turbulence models, Menter's $k-{\omega}$ SST model and Coakley's $q-{\omega}$ model, hae been adopted to solve high-Reynolds number flows. A number of numerical simulations were carried out for steady laminar and turbulent flow problems as well as unsteady flow problem. The code was verified and validated by comparing the results with other computational results and experimental results. The results of numerical simulations showed that the present developed code with the artificial compressibility method can be applied to slve steady and unsteady incompressible flows.

  • PDF

Determining Optimal Build Orientation in Fused Deposition Modeling for Minimizing Post Machining by Using Genetic Algorithm. (FDM(Fused Deposition Modeling) part의 후가공 최소화를 위한 최적성형방향 결정)

  • 안대건;김호찬;양화준;이일엽;장태식;정해도;이석희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.18-21
    • /
    • 2003
  • Fused Deposition Modeling (FDM) parts are made by piling up thin layers that cause the stair stepping effect at the surface of FDM parts. This effect brings about poor surface roughness of the part and requires additional post machining such as manual finishing that is detrimental to the part geometry and time consuming. Determining optimal build orientation for FDM parts can be one solution to minimize the post machining. However, by using the CAD model, calculating the optimal build orientation is impractical due to heavy computing process. In order to calculate the optimal build orientation with high speed. the surface roughness model based on measured data and interpolation is newly developed in this research. Also. the genetic algorithm (GA) is applied for acquiring reliable solution. Finally, It is verified from the test that the presented approach is very efficient for reducing the additional post machining process fer FDM parts.

  • PDF

CAVITATION FLOW ANALYSIS OF HYDROFOIL WITH CHANGE OF ANGLE OF ATTACK (받음각 변화에 대한 수중익형의 캐비테이션 해석)

  • Kang, T.J.;Park, W.G.;Jung, C.M.
    • Journal of computational fluids engineering
    • /
    • v.19 no.2
    • /
    • pp.17-23
    • /
    • 2014
  • Cavitation causes a great deal of noise, damage to components, vibrations, and a loss of efficiency in devices, such as propellers, pump impellers, nozzles, injectors, torpedoes, etc. Thus, the cavitating flow simulation is of practical importance for many engineering systems. In the present work, a two-phase flow solver based on the homogeneous mixture model has been developed. The solver employs an implicit preconditioning, dual time stepping algorithm in curvilinear coordinates. The flow characteristics around Clark-Y hydrofoil were calculated and then validated by comparing with the experimental data. The lift and drag coefficients with changes of angle of attack and cavitation number were obtained. The results show that cavity length and lift, drag coefficient increase with increasing angle of attack.

A Strategy to Evaluate Semi-Active Suspension System using Real-Time Hardware-in-the-Loop Simulation (실시간 Hardware-in-the-Loop 시뮬레이션을 이용한 반능동 현가시스템 특성 평가)

  • Choi, G.J.;Noh, K.H.;Yoo, Y.M.;Kim, H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.186-194
    • /
    • 2001
  • To meet the challenge of testing increasingly complex automotive control systems, the real-time hardware-in-the-loop(HIL) simulation technology has been developed. In this paper, a strategy for evaluation of semiactive suspension systems using real-time HIL simulation is presented. A multibody vehicle model is adopted to simulate vehicle dynamic motions accurately. Accuracy of the vehicle simulation results is compared to that of the real vehicle field test and proven to be very accurate. The controller and stepping motor to adjust semi-active damper stage are equipped as external hardwares and connected to the real-time computer which has vehicle dynamic model. Open and closed loop test methods are used to evaluate a controlled suspension system and the system's operations are verified it is found that the proposed evaluation methods can be used well for the verification of semi-active suspension systems.

  • PDF

Optimal Pricing Policy under Uncertain Product Lifetimes (불확실한 제품 수명주기를 고려한 최적가격결정 모형에 관한 연구)

  • 이훈영;주기인
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.25 no.2
    • /
    • pp.23-31
    • /
    • 2000
  • Many studies in marketing and economics have attempted to model price and sales path under the dynamic diffusion process. Most of these models have been based on a fixed product lifetime. The current business climate requiring intensive development of new products however affects the diffusion of new products and their lifetime. Many products have not enjoyed the expected life cycle at the launching stage due to intense technical development competitive reactions, and financial problems. Most diffusion models however have not taken account of the lifetime uncertainty of new product. If the products do not last over the planning horizon set by those models. the optimal price derived from them could be futile. Therefore we had better take such lifetime uncertainty into consideration when developing diffusion models, In this paper we study the impact of uncertain product lifetime on its optimal pricing path in non-competitive market. We develop an optimal pricing model under uncertain product lifetimes and conduct a simulation study to investigate their effects on the optimal pricing and corresponding sales paths. The simulation study provides some interesting findings on optimal pricing policy under uncertain product lifetime. This study could be a stepping stone for the further extended study of optimal pricing strategy with uncertain product lifetime.

  • PDF

Modeling and Energy Management Strategy in Energetic Macroscopic Representation for a Fuel Cell Hybrid Electric Vehicle

  • Dinh, To Xuan;Thuy, Le Khac;Tien, Nguyen Thanh;Dang, Tri Dung;Ho, Cong Minh;Truong, Hoai Vu Anh;Dao, Hoang Vu;Do, Tri Cuong;Ahn, Kyoung Kwan
    • Journal of Drive and Control
    • /
    • v.16 no.2
    • /
    • pp.80-90
    • /
    • 2019
  • Fuel cell hybrid electric vehicle is an attractive solution to reduce pollutants, such as noise and carbon dioxide emission. This study presents an approach for energy management and control algorithm based on energetic macroscopic representation for a fuel cell hybrid electric vehicle that is powered by proton exchange membrane fuel cell, battery and supercapacitor. First, the detailed model of the fuel cell hybrid electric vehicle, including fuel cell, battery, supercapacitor, DC-DC converters and powertrain system, are built on the energetic macroscopic representation. Next, the power management strategy was applied to manage the energy among the three power sources. Moreover, the control scheme that was based on back-stepping sliding mode control and inversed-model control techniques were deduced. Simulation tests that used a worldwide harmonized light vehicle test procedure standard driving cycle showed the effectiveness of the proposed control method.

Deformation of Non-linear Dispersive Wave over the Submerged Structure (해저구조물에 대한 비선형분산파의 변형)

  • Park, D.J.;Lee, J.W.
    • Journal of Korean Port Research
    • /
    • v.12 no.1
    • /
    • pp.75-86
    • /
    • 1998
  • To design a coastal structure in the nearshore region, engineers must have means to estimate wave climate. Waves, approaching the surf zone from offshore, experience changes caused by combined effects of bathymetric variations, interference of man-made structure, and nonlinear interactions among wave trains. This paper has attempted to find out the effects of two of the more subtle phenomena involving nonlinear shallow water waves, amplitude dispersion and secondary wave generation. Boussinesq-type equations can be used to model the nonlinear transformation of surface waves in shallow water due to effect of shoaling, refraction, diffraction, and reflection. In this paper, generalized Boussinesq equations under the complex bottom condition is derived using the depth averaged velocity with the series expansion of the velocity potential as a product of powers of the depth of flow. A time stepping finite difference method is used to solve the derived equation. Numerical results are compared to hydraulic model results. The result with the non-linear dispersive wave equation can describe an interesting transformation a sinusoidal wave to one with a cnoidal aspect of a rapid degradation into modulated high frequency waves and transient secondary waves in an intermediate region. The amplitude dispersion of the primary wave crest results in a convex wave front after passing through the shoal and the secondary waves generated by the shoal diffracted in a radial manner into surrounding waters.

  • PDF

Adjustment of the Appropriate Cost Support Rate for Measuring the Working Environment (작업환경측정 적정 비용지원율 수준으로의 조정 방안)

  • Park, Ji-Yeon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.31 no.4
    • /
    • pp.353-366
    • /
    • 2021
  • Objectives: An appropriate level of cost support is being proposed to maximize the participation rate. In addition, as the amount of support is highly concentrated at the level of the limit under the current level of supports, the level of cost support is low when the actual level of cost of measuring the working environment exceeds the limit. This paper describes the adjustment of an appropriate cost support rate. Methods: First, this paper analyzes the current cost support status using data from the KOSHA. Second, an alternative for adjusting the cost support rate is presented in consideration of the incentive aspect. Third, we present simulation results for the average cost support rate, the impact of each alternative on finance, and more. Fourth, the most desirable adjustment method is presented after comparing and analyzing the results of various alternatives. Results: In this paper, we present a new scale model. This model is a mixture of flat-rate, fixed rate, and subside cap. It is expected that the new model will not only facilitate participation in businesses with low measurement costs, but also have the effect of controlling measurement costs for institutions that incur greater costs. It is also expected that setting a cap will have the effect of considering government finances and inducing excessively costly institutions to reduce costs. Thus, the new model is likely to be superior to others. If the fourth plan is applied to new businesses and the fifth plan is applied to sustainable businesses, the average cost support rates will be 87.68 percent and 65.18 percent, respectively, and the needed finances will be 2.5 billion won, 18.8 billion won, and 21.3 billion won in total. Conclusions: It seems most desirable to introduce a new model that combines flat-rate, fixed-rate, and subsidy cap systems and achieve an appropriate cost support rate through this model.