• Title/Summary/Keyword: Step-loading

Search Result 379, Processing Time 0.027 seconds

Characteristics of Deformation Modulus and Poisson's Ratio of Soil by Unconfined Loading-Reloading Axial Compression Process (재하-제하과정에서 발생하는 흙의 변형계수 및 포아송비의 특성)

  • Song, Chang-Seob;Kim, Myeong-Hwan;Kim, Gi-Beom;Park, Oh-Hyun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.3
    • /
    • pp.45-52
    • /
    • 2022
  • Prediction of soil behavior should be interpreted based on the level of axial strain in the actual ground. Recently numerical methods have been carried out focus on the state of soil failure. However considered the deformation of soil the prior to failure, mostly the small strain occurring in the elastic range is considered. As a result of calculating the deformation modulus to 50% of the maximum unconfined compression strength, Deformation modulus (E50) showed a tendency to increase according to the degree of compaction by region. The Poisson's ratio during loading-unloading was 0.63, which was higher than the literature value of 0.5. For the unconfined compression test under cyclic loading for the measurement of permanent strain, the maximum compression strength was divided into four step and the test was performed by load step. Changes in permanent strain and deformation modulus were checked by the loading-unloading test for each stage. At 90% compaction, the permanent deformation of the SM sample was 0.21 mm, 0.37 mm, 0.6 mm, and 1.35 mm. The SC samples were 0.1 mm, 0.17 mm, 0.42 mm, and 1.66 mm, and the ML samples were 0.48 mm, 0.95 mm, 1.30 mm, and 1.68 mm.

A finite element model for long-term analysis of timber-concrete composite beams

  • Fragiacomo, M.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.2
    • /
    • pp.173-189
    • /
    • 2005
  • The paper presents a finite element model for studying timber-concrete composite beams under long-term loading. Both deformability of connection system and rheological behaviour of concrete, timber and connection are fully considered. The creep of component materials and the influence of moisture content on the creep of timber and connection, the so-called "mechano-sorptive" effect, are evaluated by means of accurate linear models. The solution is obtained by applying an effective step-by-step procedure in time, which does not require storing the whole stress history in some points in order to account for the creep behaviour. Hence the proposed method is suitable for analyses of composite beams subjected to complex loading and thermo-hygrometric histories. The possibility to accurately predict the long-term response is then shown by comparing numerical and experimental results for different tests.

Energy approach for dynamic buckling of shallow fixed arches under step loading with infinite duration

  • Pi, Yong-Lin;Bradford, Mark Andrew;Qu, Weilian
    • Structural Engineering and Mechanics
    • /
    • v.35 no.5
    • /
    • pp.555-570
    • /
    • 2010
  • Shallow fixed arches have a nonlinear primary equilibrium path with limit points and an unstable postbuckling equilibrium path, and they may also have bifurcation points at which equilibrium bifurcates from the nonlinear primary path to an unstable secondary equilibrium path. When a shallow fixed arch is subjected to a central step load, the load imparts kinetic energy to the arch and causes the arch to oscillate. When the load is sufficiently large, the oscillation of the arch may reach its unstable equilibrium path and the arch experiences an escaping-motion type of dynamic buckling. Nonlinear dynamic buckling of a two degree-of-freedom arch model is used to establish energy criteria for dynamic buckling of the conservative systems that have unstable primary and/or secondary equilibrium paths and then the energy criteria are applied to the dynamic buckling analysis of shallow fixed arches. The energy approach allows the dynamic buckling load to be determined without needing to solve the equations of motion.

A Faster Algorithm for the Ring Loading problem with Demand Splitting (분할 루팅이 허용되는 링의 용량결정문제에 대한 개선된 해법)

  • 명영수;김후곤
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.26 no.4
    • /
    • pp.99-108
    • /
    • 2001
  • In the ring loading problem with demand splitting, traffic demands are given for each pall of nodes in an undirected ring network and a flow is routed in either of the two directions, clockwise and counter-clockwise. The load of a link is the sum of the flows routed through the link and the objective of the problem is to minimize the maximum load on the ring. The fastest a1gorithm to date is Myung, Kim and Tcha's a1gorithm that runs in Ο(n|K|) time where n is the number of nodes and K is the index set of the origin-destination pairs of nodes having flow traffic demands. Here we develop an a1gorithm for the ring loading problem with demand splitting that improves the rerouting step of Myung, Kim and Tcha's a1gorithm arid runs in Ο(min{n|K|, n$^2$}) time.

  • PDF

Seismic Performance Test of Concrete Column Reinforced with EPFT (EPFT 강관기둥으로 보강된 콘크리트 기둥의 내진성능실험)

  • Kim, Yu-Seong;Lee, Joon-Ho;Kim, Gee-Chul
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.3
    • /
    • pp.73-80
    • /
    • 2022
  • Unlike the CFT retrofit method, The EPFT retrofit method, which fills the steel tube with engineering plastic, does not require a separate concrete forming work and is a lightweight seismic Retrofit Method. In this study, an prototype model of the EPFT was proposed, and to analyze the seismic performance, an independent specimens and a reinforced concrete column were fabricated to conduct a seismic performance test. As a result of loading test of the independent specimens, the strength was increased compared to the steel tube column without internal filling, and the ductility ratio did not significantly increase due to the falling off of the weld. As a result of loading test of the concrete reinforcement specimen, the strength, ductility ratio, and energy dissipation were increased, and the number of cracks by loading step decreased compared to the non-reinforced specimen.

Micro-CT evaluation of internal adaptation in resin fillings with different dentin adhesives

  • Han, Seung-Hoon;Park, Sung-Ho
    • Restorative Dentistry and Endodontics
    • /
    • v.39 no.1
    • /
    • pp.24-31
    • /
    • 2014
  • Objectives: The purpose of present study was to evaluate the internal adaptation of composite restorations using different adhesive systems. Materials and Methods: Typical class I cavities were prepared in 32 human third molars. The teeth were divided into the following four groups: 3-step etch-and-rinse, 2-step etch-and-rinse, 2-step self-etch and 1-step self-etch system were used. After the dentin adhesives were applied, composite resins were filled and light-cured in two layers. Then, silver nitrate solution was infiltrated, and all of the samples were scanned by micro-CT before and after thermo-mechanical load cycling. For each image, the length to which silver nitrate infiltrated, as a percentage of the whole pulpal floor length, was calculated (%SP). To evaluate the internal adaptation using conventional method, the samples were cut into 3 pieces by two sectioning at an interval of 1 mm in the middle of the cavity and they were dyed with Rhodamine-B. The cross sections of the specimens were examined by stereomicroscope. The lengths of the parts where actual leakage was shown were measured and calculated as a percentage of real leakage (%RP). The values for %SP and %RP were compared. Results: After thermo-mechanical loading, all specimens showed significantly increased %SP compared to before thermo-mechanical loading and 1-step self-etch system had the highest %SP (p < 0.05). There was a tendency for %SP and %RP to show similar microleakage percentage depending on its sectioning. Conclusions: After thermo-mechanical load cycling, there were differences in internal adaptation among the groups using different adhesive systems.

Calculation of Creep Coefficient for Concrete Structures Applying Time Step Analysis for Relative Humidity and Temperature (상대습도 및 온도에 대한 시간 단계 해석을 적용한 콘크리트 구조의 크리프계수 산정 )

  • Kyunghyun Kim;Ki Hyun Kim;Inyeol Paik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.5
    • /
    • pp.75-83
    • /
    • 2023
  • As part of a study to analyze the excessive camber occurring in prestressed concrete railway bridges, this paper presents a calculation method and analysis results for the creep coefficient which defines the increase in camber of a concrete structure over time. Using the creep coefficient formula of the design code, the coefficient is obtained by applying the climatic conditions (relative humidity and temperature) of 12 regions in Korea. The effects of differences in climatic conditions by region and starting time of load on the creep coefficient are analyzed. In order to properly calculate the creep, most of which occurs in the early stages of loading, a detailed analysis is performed by applying a time step analysis method to consider varying climate conditions through loaded period. The creep coefficient obtained by applying the average climate conditions of the region is similar to the average of the creep coefficients obtained by time step analysis. Through time step analysis, it is shown that the offset and overlap effects of relative humidity and temperature on the creep coefficient and the climate effect at the time of initial loading can be appropriately represented.

Distribution and evolution of residual voids in longwall old goaf

  • Wang, Changxiang;Jiang, Ning;Shen, Baotang;Sun, Xizhen;Zhang, Buchu;Lu, Yao;Li, Yangyang
    • Geomechanics and Engineering
    • /
    • v.19 no.2
    • /
    • pp.105-114
    • /
    • 2019
  • In this paper, simulation tests were conducted with similar materials to study the distribution of residual voids in longwall goaf. Short-time step loading was used to simulate the obvious deformation period in the later stage of arch breeding. Long-time constant loading was used to simulate the rheological stage of the arch forming. The results show that the irregular caving zone is the key area of old goaf for the subsidence control. The evolution process of the stress arch and fracture arch in stope can be divided into two stages: arch breeding stage and arch forming stage. In the arch breeding stage, broken rocks are initially caved and accumulated in the goaf, followed by the step deformation. Arch forming stage is the rheological deformation period of broken rocks. In addition, under the certain loads, the broken rock mass undergoes single sliding deformation and composite crushing deformation. The void of broken rock mass decreases gradually in short-time step loading stage. Under the water lubrication, a secondary sliding deformation occurs, leading to the acceleration of the broken rock mass deformation. Based on above research, the concept of equivalent height of residual voids was proposed, and whose calculation equations were developed. Finally, the conceptual model was verified by the field measurement data.

Dilatation characteristics of the coals with outburst proneness under cyclic loading conditions and the relevant applications

  • Li, Yangyang;Zhang, Shichuan;Zhang, Baoliang
    • Geomechanics and Engineering
    • /
    • v.14 no.5
    • /
    • pp.459-466
    • /
    • 2018
  • By conducting uniaxial loading cycle tests on the coal rock with outburst proneness, the dilatation characteristics at different loading rates were investigated. Under uniaxial loading and unloading, the lateral deformation of coal rock increased obviously before failure, leading to coal dilatation. Moreover, the post-unloading recovery of the lateral deformation was rather small, suggesting the onset of an accelerated failure. As the loading rate increased further, the ratio of the stress at the dilatation critical point to peak-intensity increased gradually, and the pre-peak volumetric deformation decreased with more severe post-peak damage. Based on the laboratory test results, the lateral deformation of the coals at different depths in the #1302 isolated coal pillars, Yangcheng Coal Mine, was monitored using wall rock displacement meter. The field monitoring result indicates that the coal lateral displacement went through various distinct stages: the lateral displacement of the coals at the depth of 2-6 m went through an "initial increase-stabilize-step up-plateau" series. When the coal wall of the working face was 24-18 m away from the measuring point, the coals in this region entered the accelerated failure stage; as the working face continued advancing, the lateral displacement of the coals at the depth over 6 m increased steadily, i.e., the coals in this region were in the stable failure stage.

Hydraulic Shock Load Response of Activated Sludge Process (활성슬러지공정의 수리학적 충격부하 반응)

  • Whang, Gye Dae;Kim, Min Ho;Ko, Sae;Cho, Chul Hwi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.3
    • /
    • pp.67-78
    • /
    • 1997
  • The objective of study was to examine to transient response of hydraulic shock loading in activated sludge process for treatment of municipal sewage. The general experiment approach was to operate the system under steady-state(pre-shock), then to apply step changes during 24hours in fourfold hydraulic shock loading at the same organic loading. Performance was assessed in both the transient state and the new steady-state(post-shock). Three bench scale activated sludge reactors were operated to investigate the effect of fourfold hydraulic shock loading on TSS and COD removal efficiency. In activated sludge reactors operated with 13hours and 7hours of HRT, effluent quality of all reactors was not changed for few effects, and also showed no foaming and no sludge bulking. Those results are the same as sludge withdrawn reactors. The effect of fourfold hydraulic shock loading on the activated sludge reactors operated with 3hours of HRT was most severe. The effluent quality was deteriorated significantly and generate foaming in reactors. Less than 24hours after the fourfold shock loading applied, the activated sludge system seemed to attain a new steady-state condition as show by effluent.

  • PDF