• Title/Summary/Keyword: Step-Down DC-DC converter

Search Result 82, Processing Time 0.03 seconds

Operation Characteristic Analysis of Step-Down Converter for LEO Satellite (저궤도 인공위성을 위한 강압형 컨버터의 동작특성 해석)

  • Park, Hee-Sung;Cha, HanJu
    • Proceedings of the KIPE Conference
    • /
    • 2012.11a
    • /
    • pp.121-122
    • /
    • 2012
  • 저궤도 인공위성의 전력변환 시스템은 태양전지판에서 생성된 전력을 배터리와 전장품으로 구성된 비조절형 버스로 전압 강하하여 제공한다. 무게, 부피, EMI/EMC 특성에 제한적인 요구조건을 갖는 인공위성의 응용분야에 적용하기 위하여 설계된 강압형 DC/DC 컨버터는 기존의 벅-컨버터와 유사한 동작특성을 보이지만 인턱터를 분리함으로써 입력단에도 연속적인 전류특성을 보이며 두 개로 분리된 인턱터는 부피와 무게에서 이점을 갖추고 있다. 본 논문에서는 연속적인 입출력 전류 특성을 갖는 강압형 컨버터의 동작특성에 대하여 기술한다.

  • PDF

A Study on the Adaptive Piezoelectric Energy Harvesting (적응 제어기를 이용한 압전 소자로부터의 에너지 회수에 대한 연구)

  • Park Jong-Soo;Nam Yoon-Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.6 s.183
    • /
    • pp.64-71
    • /
    • 2006
  • A target of this paper is to study on the usefulness of the adaptive piezoelectric energy harvesting device as a wireless electrical power supply when it is driven by mechanical vibrations of low frequency. For this purpose, an adaptive control technique and a step-down converter are used. A THUNDER series a piezoelectric material (TH7-R), which has been developed by a NASA engineer is selected for this study. In order to provide a mechanical energy to the piezoelectric material, a mechanical motion vibrator is designed. The adaptive controller is implemented using a dSPACE DS1104 controller board. The do-dc converter with an adaptive control technique harvests energy at over five times the rate of direct charging without a converter.

A Study on the Reliability Analysis in LVDC Distribution System Considering Layout (저압직류 배전계통의 구성 형태를 고려한 공급신뢰도 분석에 관한 연구)

  • Kim, Chung-Mo;No, Chul-Ho;Han, Joon;Oh, Yun-Sik;Kim, Hyun-Soo;Baek, In-Ho;Kim, Chul-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.2
    • /
    • pp.75-81
    • /
    • 2015
  • At the end of the 19th century, Edison's DC power system and Tesla's AC power system was debated in power market. Finally, AC system became the primary system of the power market because both step-up and step-down of voltage by using transformer and long-distance power transmission are easily possible. However, nowadays the power market takes some action for introducing DC system. Both domestic and foreign researchers are conducting the study on the DC system as well. Some researchers have conducted the studies on power quality and economic evaluation of the DC distribution system but DC distribution system is still controversial in terms of the effectiveness and reliability. In this paper, we calculate the reliability indices of the Low Voltage Direct Current(LVDC) distribution system considering arrangement of power electronics, layout of the distribution system, and distance between load points.

A design of the high efficiency PMIC with DT-CMOS switch for portable application (DT-CMOS 스위치를 사용한 휴대기기용 고효율 전원제어부 설계)

  • Ha, Ka-San;Lee, Kang-Yoon;Ha, Jae-Hwan;Ju, Hwan-Kyu;Koo, Yong-Seo
    • Journal of IKEEE
    • /
    • v.13 no.2
    • /
    • pp.208-215
    • /
    • 2009
  • The high efficiency power management IC(PMIC) with DT-CMOS(Dynamic Threshold voltage MOSFET) switching device for portable application is proposed in this paper. Because portable applications need high output voltages and low output voltage, Boost converter and Buck converter are embedded in One-chip. PMIC is controlled with PWM control method in order to have high power efficiency at high current level. DTMOS with low on-resistance is designed to decrease conduction loss. Boost converter and Buck converter, are based on Voltage-mode PWM control circuits and low on-resistance switching device, achieved the high efficiency near 92.1% and 95%, respectively, at 100mA output current. And Step-down DC-DC converter in stand-by mode below 1mA is designed with LDO in order to achive high efficiency.

  • PDF

Design of a CCM/DCM dual mode DC-DC Buck Converter with Capacitor Multiplier (커패시터 멀티플라이어를 갖는 CCM/DCM 이중모드 DC-DC 벅 컨버터의 설계)

  • Choi, Jin-Woong;Song, Han-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.21-26
    • /
    • 2016
  • This paper presents a step-down DC-DC buck converter with a CCM/DCM dual-mode function for the internal power stage of portable electronic device. The proposed converter that is operated with a high frequency of 1 MHz consists of a power stage and a control block. The power stage has a power MOS transistor, inductor, capacitor, and feedback resistors for the control loop. The control part has a pulse width modulation (PWM) block, error amplifier, ramp generator, and oscillator. In this paper, an external capacitor for compensation has been replaced with a multiplier equivalent CMOS circuit for area reduction of integrated circuits. In addition, the circuit includes protection block, such as over voltage protection (OVP), under voltage lock out (UVLO), and thermal shutdown (TSD) block. The proposed circuit was designed and verified using a $0.18{\mu}m$ CMOS process parameter by Cadence Spectra circuit design program. The SPICE simulation results showed a peak efficiency of 94.8 %, a ripple voltage of 3.29 mV ripple, and a 1.8 V output voltage with supply voltages ranging from 2.7 to 3.3 V.

Analysis of partial resonant AC-DC converter for high power and power factor

  • Mun, Sang-Pil;Kim, Si-Lyur;Lee, ki-Youn;Hyun-Woo;Katsunori taniguchi, Katsunori-Taniguchi
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.920-927
    • /
    • 1998
  • This paper proposed that an Analysis of a partial resonant AC-DC converter for high power and power factor operates with four choppers connecting to a number of parallel circuit. To improve these, a large number of soft switching topologies included a resonant circuit have been proposed. And, some simulative results on computer are included to confirm the validity of the analytical results. The partial resonant circuit makes use of an inductor using step-down and a condenser of lose-less snubber. The result is that the switching loss is very low and the efficiency of system is high. And the snubber condenser used in a partial resonant circuit makes charging energy regenerated at input power source for resonant operation. The proposed conversion system is deemed the most suitable for high power applications where the power switching devices are used

  • PDF

A Study on Performance Improvement of Sensorless Operation of the Brushless DC Moter in Low Speed Region (저속영역에서의 브러시리스 직류전동기의 센서리스 운전 성능 향상에 대한 연구)

  • Seo Mun-Seok;Bae Jong-Pyo;Choe Jae Hyeok;Kim Jong-Sun;Yoo Ji-Yoon;Yeo Hyeong-Gee
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.124-128
    • /
    • 2002
  • This Paper propose a novel sensorless drive system for the trapezoidal brushless DC motor in Bow speed region. The inverter DC input voltage is controlled by step-down converter for low speed operation. A indirect rotor position sensing technique based on a detailed analysis of the terminal voltage characterisrics is proposed in this paper. A sensorless drive system is implemented using a TMS320F240 for the main process and IPM(Intelligent Power Module) for the inverter.

  • PDF

Development of High Voltage, High Efficiency DC-DC Power Module for Modern Shipboard Multi-Function AESA Radar Systems (함정용 다기능 AESA 레이더 시스템을 위한 고전압·고효율 DC-DC 전원모듈 개발)

  • Chong, Min-Kil;Lee, Won-Young;Kim, Sang-Keun;Kim, Su-Tae;Kwon, Simon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.50-60
    • /
    • 2021
  • For conventional AESA radars, DC-DC power modules using 300 Vdc have low efficiency, high volume, heavy weight, and high price, which have problems in modularity with T/R module groups. In this paper, to improve these problems, we propose a distributed DC-DC power module with high-voltage 800 Vdc and high-efficiency Step-down Converter. In particular, power requirements for modern and future marine weapons systems and sensors are rapidly evolving into high-energy and high-voltage power systems. The power distribution of the next generation Navy AESA radar antenna is under development with 1000 Vdc. In this paper, the proposed highvoltage, high-efficiency DC-DC power modules increase space(size), weight, power and cooling(SWaP-C) margins, reduce integration costs/risk, and reduce maintenance costs. Reduced system weight and higher reliability are achieved in navy and ground AESA systems. In addition, the proposed architecture will be easier to scale with larger shipboard radars and applicable to other platforms.

A Charging Circuit for the Power Stotage of Wind Power Generation (풍력발전의 전력저장을 위한 충전회로)

  • Ko, Seok-Cheol;Kang, Hyeong-Gon;Lim, Sung-Hun;Han, Byoung-Sung;Song, Seung-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.11
    • /
    • pp.635-644
    • /
    • 2002
  • Many generating units can be in parallel connection to one battery and inverter. However, one of the biggest problems we encountered is that wind speed is fluctuated sharply in accordance with the unstable weather conditions. To solve this problem, we need energy storage equipment such as storage lead-acid battery. We design a system and analyze its modeling so that it supplies a stable power to the load through DC-AC inverter part. In this paper, we applied dual step-up/down buck-boost converter and dual high-frequency half-bridge converter to the proposed system. These converters are used to store energy in the battery regardless of the change of the wind speed. The operation process of two proposed types of converters for high-power battery charging is discussed along with simulation and experimental result. We design a charging circuit which is applicable in the actual wind power generation system for 30kw and confirm the circuit's validity.