• Title/Summary/Keyword: Step response

Search Result 1,313, Processing Time 0.029 seconds

An Adaptive Equalization of Amplitude Chrominance Distortion by using the Variable Step-size Technique

  • Chutchavong, Vanvisa;Janchitrapongvej, Kanok;Benjangkaprasert, Chawalit;Sangaroon, Ornlarp
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.2065-2069
    • /
    • 2004
  • This paper presents an adaptive equalizer using finite impulse response (FIR) filter and least-mean square (LMS) algorithm. Herein, the variable step-size technique (VSLMS) for compensating the amplitude of chrominance signal is utilized. The proposed equalizer can be enhanced and compressed the chrominance signal at color subcarrier. The LMS algorithm employed in simplicity structure but gives slow convergence speed. Thus, the variable step-size is very attractive algorithm due to its computational efficiencies and the speed of convergence is improved. In addition, experimental results are carried out by using the modulated 20T sine squared test signal. It is shown here that the adaptive equalizer can be equalized the amplitude chrominance distortion in color television transmission without relative delay distortion.

  • PDF

Programmable Ministep Drive

  • Thedmolee, Sunhapitch;Pongswatd, Sawai;Kummool, Sart;Ukakimapurn, Prapart
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2274-2277
    • /
    • 2003
  • A cylindrical permanent magnet inside the four-phase permanent magnet (PM) stepping motor is employed as the rotor. The stator has four teeth around, which its coils are wound. The mode of excitation can be classified into 3 modes: single-phase excitation, two-phase excitation and ministep excitation. The ministep drive is a method to subdivide one step into several small steps by means of electronics. The paper presents the programmable ministep technique drive. This technique decodes the results obtained from the counter to locate the data in Read Only Memory (ROM). The Sinusoidal Pulse Width Modulation (SPWM) is transformed to binary file and saved to the ROM. The experiment is performed with the four-phase PM stepping motor and drives from a two-phase programmable sinusoidal ministep signal, instead of square wave. The results show that the performances of the proposed programmable ministep technique drive have high efficiency, smooth step motion, and high speed response. Moreover, the resolution of sinusoidal ministep signal can be controlled by the input frequency (f command).

  • PDF

Application of Multi-step Undervoltage Load Shedding Schemes to the KEPCO System

  • Shin, Jeong-Hoon;Nam, Su-Chul;Lee, Jae-Gul;Choy, Young-Do;Kim, Tae-Kyun;Song, Hwa-Chang
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.4
    • /
    • pp.476-484
    • /
    • 2009
  • This paper deals with improvements to the special protection schemes (SPS) which have been applied to the low probability and high impact contingencies in the Korea Electric Power Corporation (KEPCO) system since 2004. Among them, the SPS for voltage instability in the Seoul metropolitan area is considered in this paper, and is a form of event-based undervoltage load shedding with a single-step scheme. Simulation results based upon a recent event that occurred on 765kV lines show that the current setting values of the SPS have to be revised and enhanced. In addition, by applying response-based multi-step undervoltage load shedding (UVLS) schemes to severe contingencies in the system, more effective results than those of the existing single-step SPS can be obtained. Centralized and distributed UVLS schemes are considered in the simulation. ULTC-based load recovery models and over excitation limiters (OXL) for the KEPCO system are also included in the long-term voltage instability studies.

Climate change impact assessment of agricultural reservoir using system dynamics model: focus on Seongju reservoir

  • Choi, Eunhyuk
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.2
    • /
    • pp.311-331
    • /
    • 2021
  • Climate change with extreme hydrological events has become a significant concern for agricultural water systems. Climate change affects not only irrigation availability but also agricultural water requirement. In response, adaptation strategies with soft and hard options have been considered to mitigate the impacts from climate change. However, their implementation has become progressively challenging and complex due to the interconnected impacts of climate change with socio-economic change in agricultural circumstances, and this can generate more uncertainty and complexity in the adaptive management of the agricultural water systems. This study was carried out for the agricultural water supply system in Seongju dam watershed in Seonju-gun, Gyeongbuk in South Korea. The first step is to identify system disturbances. Climate variation and socio-economic components with historical and forecast data were investigated Then, as the second step, problematic trends of the critical performance were identified for the historical and future climate scenarios. As the third step, a system structure was built with a dynamic hypothesis (causal loop diagram) to understand Seongju water system features and interactions with multiple feedbacks across system components in water, agriculture, and socio-economic sectors related to the case study water system. Then, as the fourth step, a mathematical SD (system dynamics) model was developed based on the dynamic hypothesis, including sub-models related to dam reservoir, irrigation channel, irrigation demand, farming income, and labor force, and the fidelity of the SD model to the Seongju water system was checked.

A Study on Development of Applications which Provides Step-by-step CPR Guidelines and Learning Materials for Non Health-related Person (비보건계열 일반인을 위한 단계별 CPR 가이드라인과 학습자료 제공 어플리케이션 개발 연구)

  • Kim, Jong-Min
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.649-651
    • /
    • 2021
  • In Korea, there are around 30,000 cardiac arrest patients annually. Gradually the number is increasing. Against this background, CPR education and publicity programs were expanded nationwide, but the rate of witness CPR by the general public was 4.4%, which is significantly lower than the 20%~70% rate in other countries. Therefore, in this paper, we analyzed the factors affecting the performance of CPR by witnesses who discovered cardiac arrest patients. Based on the results, an application planning and development study was conducted to provide users with correct cardiorespiratory response tips and step-by-step CPR guidelines to help users effectively assist in increasing the rate of CPR by general eyewitnesses.

  • PDF

Preliminary Study on Linear Dynamic Response Topology Optimization Using Equivalent Static Loads (등가정하중을 사용한 선형 동적반응 위상최적설계 기초연구)

  • Jang, Hwan-Hak;Lee, Hyun-Ah;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.12
    • /
    • pp.1401-1409
    • /
    • 2009
  • All the forces in the real world act dynamically on structures. Design and analysis should be performed based on the dynamic loads for the safety of structures. Dynamic (transient or vibrational) responses have many peaks in the time domain. Topology optimization, which gives an excellent conceptual design, mainly has been performed with static loads. In topology optimization, the number of design variables is quite large and considering the peaks is fairly costly. Topology optimization in the frequency domain has been performed to consider the dynamic effects; however, it is not sufficient to fully include the dynamic characteristics. In this research, linear dynamic response topology optimization is performed in the time domain. First, the necessity of topology optimization to directly consider the dynamic loads is verified by identifying the relationship between the natural frequency of a structure and the excitation frequency. When the natural frequency of a structure is low, the dynamic characteristics (inertia effect) should be considered. The equivalent static loads (ESLs) method is proposed for linear dynamic response topology optimization. ESLs are made to generate the same response field as that from dynamic loads at each time step of dynamic response analysis. The method was originally developed for size and shape optimizations. The original method is expanded to topology optimization under dynamic loads. At each time step of dynamic analysis, ESLs are calculated and ESLs are used as the external loads in static response topology optimization. The results of topology optimization are used to update the design variables (density of finite elements) and the updated design variables are used in dynamic analysis in a cyclic manner until the convergence criteria are satisfied. The updating rules and convergence criteria in the ESLs method are newly proposed for linear dynamic response topology optimization. The proposed updating rules are the artificial material method and the element elimination method. The artificial material method updates the material property for dynamic analysis at the next cycle using the results of topology optimization. The element elimination method is proposed to remove the element which has low density when static topology optimization is finished. These proposed methods are applied to some examples. The results are discussed in comparison with conventional linear static response topology optimization.

Local Government Response Strategies for Discharging Fukushima Radioactive Water: A Case in Busan, Ulsan, Jeju (후쿠시마 원전 오염수 방류에 따른 지자체 대응 전략: 부산, 울산, 제주 사례 위주로)

  • Won-Jo Jung;Ho-seok Nam;Min-seok Jwa;In-Hoe Jung
    • Journal of Navigation and Port Research
    • /
    • v.47 no.3
    • /
    • pp.174-181
    • /
    • 2023
  • Five local governments along the Korea-Japan Sea (Jeju, Jeonnam, Gyeongnam, Busan, Ulsan) operate a joint countermeasure committee regarding the marine discharge of contaminated water from the Fukushima nuclear power plant by Japan's Tokyo Electric Power Plant. This study compared and analyzed citizen surveys, response strategies, and detailed action plans conducted by the Jeju Research Institute, Busan Research Institute, and Ulsan Research Institute as part of a study on countermeasures for the marine discharge of contaminated water from the Fukushima nuclear power plant in Japan. The purpose was to present basic data for the preparation of effective measures. As a result of the perception survey, all citizens of local governments showed a strong negative perception of marine discharge regardless of scientific research results, and it is expected that future fisheries and tourism industries will suffer great damage. In response strategies for each local government, building a control tower was found to be the most urgent task common to all local governments. It is judged that this is because it is necessary to break away from the organization-centered system and to respond to the function-centered system for effective response. In terms of response methods, while Jeju and Busan established response plans for each sector, Ulsan City focused on practical responses with step-by-step response measures according to the release time. In terms of content, the establishment of a marine product radiation inspection system and publicity to relieve public anxiety were important. As the marine discharge of contaminated water from the Fukushima nuclear power plant is scheduled to continue until 2030, strengthening the network for sharing research results and achievements among local government research institutes was deemed necessary.

Dynamic Instability and Multi-step Taylor Series Analysis for Space Truss System under Step Excitation (스텝 하중을 받는 공간 트러스 시스템의 멀티스텝 테일러 급수 해석과 동적 불안정)

  • Lee, Seung-Jae;Shon, Su-Deok
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.3
    • /
    • pp.289-299
    • /
    • 2012
  • The goal of this paper is to apply the multi-step Taylor method to a space truss, a non-linear discrete dynamic system, and analyze the non-linear dynamic response and unstable behavior of the structures. The accurate solution based on an analytical approach is needed to deal with the inverse problem, or the dynamic instability of a space truss, because the governing equation has geometrical non-linearity. Therefore, the governing motion equations of the space truss were formulated by considering non-linearity, where an accurate analytical solution could be obtained using the Taylor method. To verify the accuracy of the applied method, an SDOF model was adopted, and the analysis using the Taylor method was compared with the result of the 4th order Runge-Kutta method. Moreover, the dynamic instability and buckling characteristics of the adopted model under step excitation was investigated. The result of the comparison between the two methods of analysis was well matched, and the investigation shows that the dynamic response and the attractors in the phase space can also delineate dynamic snapping under step excitation, and damping affects the displacement of the truss. The analysis shows that dynamic buckling occurs at approximately 77% and 83% of the static buckling in the undamped and damped systems, respectively.

Measurement of a Six-degree-of-freedom Dynamic Characteristics using Angle Sensor-Implemented Grating Interferometry (회절격자 간섭계를 이용한 초정밀 스테이지의 6 자유도 운동 특성 측정)

  • Lee, Cha-Bum;Kim, Gyu-Ha;Lee, Sun-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.8
    • /
    • pp.906-912
    • /
    • 2012
  • This paper presents the new method for a six-degree-of-freedom (DOF) motion measurement and those dynamic characterizations in an ultraprecision linear stage using angle sensor-implemented grating interferometry. It consists of a diffractive optical element, a corner cube, four separate two-dimensional position sensitive detectors, four photodiodes and auxiliary optics components. From the previous study, it was confirmed that the proposed optical system could measure a six-DOF motion error in a linear stage. In this article, six-DOF motion dynamic characteristics of the stage were investigated through the step response and with respect to the conditions with a different speed of a slide table. As a result, the natural frequency and damping ratio according to a six-DOF direction was obtained. Also, it was seen that the speed of slide table had an significant effect on a six-DOF displacement motion, especially, X, which was considered as the effect of friction mechanism and local elastic mechanical deformation in a slide guide.

Seismic Design of Mid-to-Low Rise Steel Moment Frames Based on Available Connection Rotation Capacity (접합부 회전능력에 기초한 중/저층 철골모멘트골조의 내진설계)

  • Ahn, Jae Kwon;Lee, Cheol Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.715-723
    • /
    • 2007
  • A displacement-based seismic design procedure was proposed for mid-to-low-rise steel moment frames. The proposed method was totally different from the current R-factor approach in that it directly uses available connection rotation capacity as a primary design variable. To this end, the relationship between available connection rotation capacity and seismic response modification (R factor) was established first; this relationship has been a missing link in current ductility-based design practice. A step-by-step displacement-based iterative design procedure was then proposed and verified using inelastic dynamic analysis.