• 제목/요약/키워드: Step response

검색결과 1,316건 처리시간 0.027초

Dynamic characteristics of hybrid tower of cable-stayed bridges

  • Abdel Raheem, Shehata E.
    • Steel and Composite Structures
    • /
    • 제17권6호
    • /
    • pp.803-824
    • /
    • 2014
  • The dynamic characterization is important in making accurate predictions of the seismic response of the hybrid structures dominated by different damping mechanisms. Different damping characteristics arise from the construction of the tower with different materials: steel for the upper part; reinforced concrete for the lower main part and interaction with supporting soil. The process of modeling damping matrices and experimental verification is challenging because damping cannot be determined via static tests as can mass and stiffness. The assumption of classical damping is not appropriate if the system to be analyzed consists of two or more parts with significantly different levels of damping, such as steel/concrete mixed structure - supporting soil coupled system. The dynamic response of structures is critically determined by the damping mechanisms, and its value is very important for the design and analysis of vibrating structures. An analytical approach capable of evaluating the equivalent modal damping ratio from structural components is desirable for improving seismic design. Two approaches are considered to define and investigate dynamic characteristics of hybrid tower of cable-stayed bridges: The first approach makes use of a simplified approximation of two lumped masses to investigate the structure irregularity effects including damping of different material, mass ratio, frequency ratio on dynamic characteristics and modal damping; the second approach employs a detailed numerical step-by step integration procedure in which the damping matrices of the upper and the lower substructures are modeled with the Rayleigh damping formulation.

Basic Design for Earthquake Resistance of Typical Bridges (일반교량의 내진성능 확보를 위한 기본설계)

  • Kook, Seung-Kyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • 제26권1호
    • /
    • pp.49-57
    • /
    • 2013
  • Structural elements of typical bridges are superstructure, connections, substuctures and foundations and earthquake resistance is decided with the failure mechanism formed by substuctures and connections. Therefore earthquake resistant design should be carried out in the basic design step where design strengths, e.g. design sections for structural elements are determined. The Earthquake Resistant Design Part of Korean Roadway Bridge Design Code provides two basic design procedures. The first conventional procedure applies the Code-provided response modification factors. The second new procedure is the ductility-based earthquake resistant design, where designer can determine the response modification factors. In this study, basic designs including the two design processes are carried out for a typical bridge and supplements are identified in view of providing earthquake resistance.

Design of a Microstrip Bandpass Filter Using Step Impedance Resonators and Tapped Input/Output (스텝 인피던스 공전기와 입출력 텝핑을 이용한 마이크로 스트립 대역통과 필터의 설계)

  • 박동철;박정일;이병남
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • 제26권11호
    • /
    • pp.1728-1735
    • /
    • 1989
  • A design procedure for microstrip bandpass filters using step impedance resonators (SIR's) and tapped input/output to a conventional parallel coupled line bandpass filter is presented. The filter configuration consisting of both half-wavelength and SIR's suppreses to spurious resonance response near the second harmonics, while tapping techniques offer benefit in situations where the impractical. The measured frequency responses of the designed filter are in close agreement with the computed responses.

  • PDF

Dynamic hybrid position/force controller for two cooperating robots (두 협동로보트를 위한 동력학 Hybrid 위치/힘 제어기)

  • 이남구;김종수;박종국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.327-331
    • /
    • 1992
  • In this paper, we propose dynamic hybrid control method which takes the manipulator dynamics into consideration and extend to two cooperating robots. The first step is the linearization of the manipulator dynamics and the second step is the design of position/force controllers for the linearized model which takes account of both the command response and the robustness of the controllers to modeling errors and disturbance. We also consider load sharing for each robot.

  • PDF

A study on the single phase AC/AC converter (단상 AC/AC 컨버터에 관한 연구)

  • Bae, Sang-June;Chung, Ta-Kwan
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 F
    • /
    • pp.1931-1933
    • /
    • 1998
  • In this paper, single-phase PWM AC to AC converter that operates with unit power factor and sinusoidal input line currents is presented. The output voltage of this converter is able to be obtain step up voltage as well as step down voltage. because the converter applies to operating method of buck-boost converter. The control of this converter is performed with PI control method. By using this control method low lipples in the output current and the voltage as well as fast dynamic response are achieved.

  • PDF

Analysis of Induction Heating Vessel using step response (STEP 응답을 이용한 유도가열조리기의 부하해석)

  • Han, G.H.;Jung, Y.C.;Roh, H.S.;Kwon, K.A.;Yang, W.J.
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 A
    • /
    • pp.319-321
    • /
    • 1994
  • This paper describes the analysis and modeling process of vessel which is used for induction heating jar and induction healing cooker. We present how to calculate the value of modeling parameter according to the shape of the vessel and work coil, and the temperature of vessel.

  • PDF

Modeling, Simulation, and Control of a Polyaniline/Carbon-Nanotube Polymer Actuator (폴리아닐린/탄소나노튜브 폴리머 액츄에이터의 모델링, 시뮬레이션 및 제어)

  • Sohn, Ki-Won;Yi, Byung-Ju;Kim, Sean-Jeong;Kim, In-Young;Kim, Sun-I.
    • Journal of Biomedical Engineering Research
    • /
    • 제28권3호
    • /
    • pp.348-354
    • /
    • 2007
  • Polymer actuators, which are also called as smart materials, change their shapes when electrical, chemical, thermal, or magnetic energy is applied to them and are useful in wide variety of applications such as microelectromechanical systems (MEMS), machine components, and artificial muscles. For this study, Polyaniline/carbon-nanotube polymer actuator that is one of electroactive polymer actuators was prepared. Since the nonlinear phenomena of hysteresis and a step response are essential considerations for practical use of polymer actuators, we have investigated the movement of the Polyaniline/carbon-nanotube polymer actuator and have developed an integrated model that can be used for simulating and predicting the hysteresis and a step response during actuation. The Preisach hysteresis model, one of the most popular phenomenological models of hysteresis, were used for describing the hysteretic behavior of Polyaniline/carbon-nanotube polymer actuator while the ARX method, one of system identification techniques, were used for modeling a step response. In this paper, we first expain details in preparation of the Polyaniline/carbon-nanotube polymer then present the mathematical description of our model, the extraction of the parameters, simulation results from the model, and finally a comparison with measured data.

The Interlimb Coordination During Movement Initiation From a Quiet Stance: Manipulation of Swing Limb Kinetics and Kinematics -A Preliminary Study

  • Kim, Hyeong-Dong;Yoon, Bum-Chull
    • Physical Therapy Korea
    • /
    • 제13권4호
    • /
    • pp.79-86
    • /
    • 2006
  • The purpose of the current experiment was to describe interlimb coordination when swing limb conditions are being manipulated by constraining step length or by adding a 5 or 10 pound weight to the swing limb distally. Subjects were asked to begin walking with the right limb to land on the primary target (normal step length) that is 10 cm in diameter. However, if, during movement, the light was illuminated, then the subject had to step on one of the secondary targets (long and short step length). These three step length conditions were repeated while wearing a 5 pound ankle weight and then when wearing a 10 pound ankle weight. Ground reaction force (GRF) data indicated that there were changes in the forces and slopes of the swing and stance Fx GRFs. Long stepping subjects had to increase the propulsive force required to increase step length. Consequently, swing and stance toe-off greatly increased in the long step length condition. Short step length subjects had to adequately adjust step length, which decreased the speed of gait initiation. Loading the swing limb decreased the force and slope of the swing limb. Swing and stance toe-off was longest for the long step length condition, but there was a small difference of temporal events between no weight and weight condition. It appears that subjects modulated GRFs and temporal events differently to achieve the peak acceleration force of the swing and stance limb in response to different tasks. The findings from the current study provide preliminary data, which can be used to further investigate how we modulate forces during voluntary movement from a quiet stance. This information may be important if we are to use this or a similar task to evaluate gait patterns of the elderly and patient populations.

  • PDF

A Dynamic Response Analysis of Tension Leg Platforms in Waves (I) (인장계규식 해양구조물의 동적응답해석(I))

  • 구자삼;김진하;이창호
    • Journal of Ocean Engineering and Technology
    • /
    • 제9권1호
    • /
    • pp.161-172
    • /
    • 1995
  • A numerical procedure is described fro predicting the motion and structural responses of tension leg platforms(TLPs) in waves. The developed numerical approach is based on a combination of a three dimensional source distribution method and the dynamic response analysis method, in which the superstructure of TLPs is assumed flexible instead of the rigid body assumption used in tow-step analysis method. Both the hydrodynamic interactions among TLP members, such as columns and pontoons, and the structural whole structure are formulated using element-fixed coordinate systems which have the origin at the node of the each hull element and move parallel to a space-fixed coordinate system. Numerical results are compared with the experimental and numerical ones, which are obtained in the literature, concerning the motion and structural responses of a TLP in waves. The results of comparison confirmed the validity of the proposed approach.

  • PDF

A Study of influence factors on the bridge seismic behavior (교량의 지진거동에 미치는 영향인자에 관한 연구)

  • Choi, Jong-Man;Kook, Seung-Kyu;Kim, Jun-Bum;Jung, Dong-Won
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 한국지진공학회 2005년도 학술발표회 논문집
    • /
    • pp.372-379
    • /
    • 2005
  • The earthquake resistant design concept allows the nonlinear behavior of structures under the design earthquake. Therefore the response spectrum method provided in most codes introduces the response modification factors to consider the nonlinear behavior in the design process. For bridges, the response modification factors are given according to the ductility as well as the redundancy of piers. In this study, among influence factors on the nonlinear seismic behavior, the randomness of artificial accelerograms simulated with different durations, the pier ductility represented by the inelastic behavior characteristic curve and the regularity represented by pier heights are selected. The influence of such factor on the seismic behavior is investigated by comparing response modification factors calculated with the nonlinear time step analysis.

  • PDF