• Title/Summary/Keyword: Step over

Search Result 1,667, Processing Time 0.029 seconds

Characteristics of Abrasive Water Jet Milled Surface by Overlap Cutting (중첩가공에 의한 워터젯 밀링의 가공면 특성)

  • Park, Seung Sub;Kim, Hwa Young;Ahn, Jung Hwan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.2
    • /
    • pp.118-123
    • /
    • 2016
  • Overlap cutting is a fundamental method of applying abrasive water jet (AWJ) machining to milling to produce a wider surface because the nozzle outlet is approximately 1.0 mm wide. In this study, the effects of overlap cutting on the depth profile and surface roughness are investigated. The overlapping area depends on the amount of step over, which is controlled in the pick-feed direction. If the step over is equal to or larger than the diameter of the nozzle, no overlap cut occurs but large cusps remain between the cut paths. A step over as small as one-thirds of the nozzle diameter may lead to triple-overlap cutting resulting in an extraordinary depth. By using pocket milling experiments with a step over of 0.46 (or 0.47), it is verified that AWJ can produce a milled surface of titanium, one of the hard-to-cut materials, with $76{\mu}m$ Ra.

Application of a near-wall turbulence model to the flows over a step with inclined wall (경사진 계단유동의 해석을 위한 벽면근접 난류모형의 적용)

  • An, Jong-U;Park, Tae-Seon;Seong, Hyeon-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.6
    • /
    • pp.735-746
    • /
    • 1997
  • A nonlinear low-Reynolds-number k-.epsilon. model of Park and Sung was extended to predict the flows over a step with inclined wall, where a boundary layer flow without separation and a separated and reattaching flow coexist. For a better prediction of the flows, a slight modification was made on the function of the wall damping( $f_{\mu}$) and the model constant ( $C_{{\epsilon}1}$) in the .epsilon.-equation. The model performance was validated by comparing the model predictions with the experiment. It was shown that the flows over a step with inclined wall are simulated successfully with the present model.ent model.

Shoring STEP Data over Internet using WWW (WWW를 이용한 제품정보의 공유)

  • Choi, Young;Shin, Ha-Yong;Park, Myung-Jin;Lee, Jong-Gap
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.23 no.3
    • /
    • pp.597-608
    • /
    • 1997
  • Life cycle product data is very important yet difficult to handle for manufacturing companies. Shoring and exchanging product data over world-wide-web is a part of key technology to implement PDM or CALS. STEP is widely accepted as a standard to represent the life-cycle product model data. Described in this paper is a web browser plug-in that can graphically display and explore product data represented by STEP over internet. By the use of the plug-in (named "npSTEP"), a product model data stored in STEP format on a web server can be displayed on a commonly used web client (browser), such as Netscape navigator, without any format conversion process. Furthermore one can explore the components or attributes of the product model data in hierarchical manner.

  • PDF

IMMERSED BOUNDARY METHOD FOR THE ANALYSIS OF 2D FLOW OVER A CYLINDER AND 3D FLOW OVER A SPHERE (원통 주위의 2차원 유동과 구 주위의 3차원 유동해석을 위한 가상경계법 개발)

  • Fernandes, D.V.;Suh, Y.K.;Kang, S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.194-199
    • /
    • 2007
  • IB (immersed boundary) method is one of the prominent tool in computational fluid dynamics for the analysis of flows over complex geometries. The IB technique simplyfies the solution procedure by eliminating the requirement of complex body fitted grids and it is also superior in terms of memory requirement. In this study we have developed numerical code (FOTRAN) for the analysis of 2D flow over a cylinder using IB technique. The code is validated by comparing the wake lengths and separation angles given by Guo et. al. We employed fractional-step procedure for solving the Navier-Stokes equations governing the flow and discrete forcing IB technique for imposing boundary conditions. Also we have developed a 3D code for the backward-facing-step flow and flow over a sphere. The reattachment length in backward-facing-step flow was compared with the one given by Nie and Armaly, which has proven the validity of our code.

  • PDF

A Study on Imposing Exact Solutions as Internal Boundary Conditions in Simulating Shallow-water Flows over a Step (계단을 지나는 천수 흐름의 모의에서 내부 경계조건으로서 정확해의 부여에 관한 연구)

  • Hwang, Seung-Yong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.479-492
    • /
    • 2014
  • In this study, was proposed a numerical scheme imposing exact solutions as the internal boundary conditions for the shallow-water flows over a discontinuous transverse structure such as a step. The HLLL approximate Riemann solver with the MUSCL was used for the test of the proposed scheme. Very good agreement was obtained between simulations and exact solutions for various problems of the shallow-water flows over a step. In addition, results by the numerical model showed good agreement with those of dam-break experiments over a step and stepped chute one. Developed model can simulate the shallow-water flows over discontinuous bottom such as a drop structure without additional rating curve or topography smoothing. Given the proper evaluations for the flow resistance by a step and the energy loss by the nappe flow in the future, could be simulated flooding and drying of the shallow-water flows over discontinuous topography such as a weir or the river road with retaining wall.

A Chest Compression CPR Study Performed on a Main Stretcher : Comparative study between C-step and Over the Belly

  • Gyu-Sik Shim;Song-Yi Han
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.5
    • /
    • pp.123-129
    • /
    • 2024
  • CPR is very important to paramedics, but the chest compression performed while on the move main stretcher is less accurate. The purpose of this study is to find out the difference between performing chest compression on the side of the main stretcher using C-step and on the patient's over the belly in order to increase the effect of CPR on the main object while on the move. As a result of the study, the appropriate depth (t=4.132, p=.000) and speed (t=7.177, p=.000) were shown in the group to which the C-step was applied, and the accuracy was higher (t=6.774, p=.000). In addition, it was found that there were few location defects (t=-5.197, p=.000) and too shallow errors (t=-2.948, p=.008) in the group to which the C-step was applied. In conclusion, mounting a C-step on the main stretcher seems to help improve the quality of chest compression, and it is thought that this will increase the efficiency of chest compression.

Synchronization System for Time of Mission and Flight Computers over UAV Network

  • Lee, Won-Seok;Jang, Jun-Yong;Song, Hyoung-Kyu
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.4
    • /
    • pp.387-393
    • /
    • 2021
  • This paper proposes a system to synchronize the time of computers over an unmanned aerial vehicle (UAV) network. With the proposed system, the UAVs can perform missions that require precise relative time. Also, data collected by UAVs can be fused precisely with synchronized time. In the system, to synchronize the time of all computers over the UAV network, two-step synchronization is performed. In the first step, the mission computers of the UAVs are synchronized through the server of the system. After the first step, the mission computers measure time offset between the time of the mission computers and the flight computers. The offset values are delivered to the server. In the second step, virtual time is determined by the server from the collected time offset. The measured offset is compensated by moving the synchronized time of mission computers to the reasonable virtual time. Since only the time of mission computers are controlled, any flight computers that use micro air vehicle link (MAVLink) protocol can be synchronized in the proposed system.

A study of backward-facing step flow in a rectangular duct (후향계단이 있는 사각덕트 내부의 유동특성 연구)

  • Kim, Sung-Joon;Choi, Byung-Dae
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.59-65
    • /
    • 1999
  • This study is to analyze turbulent flow over a backward-facing step in a rectangular duct. The side wall effects on the internal flow were determined by varying the aspect ratio(defined as the step span-to-height ratio) from 1 to 20. In the flow behind a backward-facing step, separation, recirculation and redeveloping is occurred frequently. These phenomena appear in a particular variation by varying the aspect ratio. The results show that the aspect ratio has an influence on the velocity and reattachment length. When the AR is increased, the reattachment length is increased. For 6 over aspect ration, the rate of increase is decreased. The length of recirculation in the upper corner is increased, as the increase of aspect ration. It's width is not changed in the variation of aspect ration. The transverse, streamwise and spanwise velocities were decreased along the flow down stream of the step.

  • PDF

Determination of Cutting Direction for Tool Path Minimization in Zigzag Milling Operation (Zigzag 밀링가공에서 공구경로 최소화를 위한 가공방향 결정방법)

  • Kim, Byoung-Keuk;Park, Joon-Young
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.27 no.1
    • /
    • pp.69-88
    • /
    • 2001
  • In the zigzag milling operation, an important issue is to design a machining strategy which minimizes the cutting time. An important variable for minimization of cutting time is the tool path length. The tool path is divided into cutting path and non-cutting path. Cutting path can be subdivided into tool path segment and step-over, and non-cutting path can be regarded as the tool retraction. We propose a new method to determine the cutting direction which minimizes the length of tool path in a convex or concave polygonal shape including islands. For the minimization of tool path length, we consider two factors such as step-over and tool retraction. Step-over is defined as the tool path length which is parallel to the boundary edges for machining area and the tool retraction is a non-cutting path for machining any remaining regions. In the determination of cutting direction, we propose a mathematical model and an algorithm which minimizes tool retraction length in complex shapes. With the proposed methods, we can generate a tool path for the minimization of cutting time in a convex or concave polygonal shapes including islands.

  • PDF

The Effect of Tool Path on the Cusp Height in Ball End Milling of Cylinderical Surface (볼엔드밀 가공시 공구경로가 Cusp의 크기에 미치는 영향)

  • 윤희중;박상량;박경호;박동삼
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.944-947
    • /
    • 2000
  • Sculptured surface machining plays a vital role in the process of bring new products to the market place. A great variety of products rely on this technology for the production of the dies and moulds used in manufacturing. And, the use of CNC machines and CAD/CAM system has become a vital parts of product development process. The propose of this study is to investigate the effect of cutting parameters on the machinability such as surface roughness and cusp generated in the machining of sculptured surface on a three-axis CNC machining center using the CAD/CAM system. Experimental result showed that: In step down cutting, as the inclined angle of surface became smaller, the cusp height appeared higher. On the other hand, in step over cutting, as the inclined angle of surface became larger, the cusp height appeared higher. In the point of precision machining, step over cutting was more effective. For the minimization of cusp height, step down cutting was effective in larger inclined surface, but step over cutting in smaller inclined surface.

  • PDF