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IMMERSED BOUNDARY METHOD FOR THE ANALYSIS OF
2D FLOW OVER A CYLINDER AND 3D FLOW OVER A SPHERE
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IB (immersed boundary) method is one of the prominent ool in computational fluid dynamics for the
analysis of flows over complex geometries. The IB technique simplyfies the solution procedure by eliminating
the requirement of complex body fitted grids and it is also superior in lerms of memory requirement. In this
study we have developed numerical code (FOTRAN) for the analysis of 2D flow over a cylinder using IB
technique. The code is validated by comparing the wake lengths and separation angles given by Guo et. al.
We employed fractional-step procedure for solving the Navier-Stokes equations governing the flow and discrete
forcing IB technique for imposing boundary conditions. Also we have developed a 3D code for the
backward-facing-step flow and flow over a sphere. The reattachment length in backward-facing-step flow was
compared with the one given by Nie and Armaly, which has proven the validity of our code.
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1. INTRODUCTION

Numericaly solving flow problems involving complex
boundaries is one of the great difficulty faced in
computational fluid dynamics. The literature shows that a
vast number of problems with complex geometries were
studied using unstructured body fitted grids. In 1972,
Peskin{2] showed that these problems can be numerically
studied using a regular orthogonal grid system (cartesian
or cylindrical) and later this method was termed as
Immersed Boundary(IB) method. The method became
popular due to its many advantages over conventional
body conformal grids. Such as the task of grid generation
is simplified, as IB method uses conventional orthogonal
grid. The IB technique is also superior to conventional
body conformal grids with respect to memory requirement

18489, Soldstn gt A Ages

2 399, Sl A AFLH we

3 A34Y, Forqgta viAT} By

* Corresponding author, E-mail: dolfredf@rediffmail.com

Immersed boundary method, Flow around a cylinder, Flow over a sphere

and CPU-time saving. And even moving boundaries can
be easily handled using IBwithout regenerating the grids.
But imposing boundary conditions is not straight forward
in IB method and also the ramification of boundary
treatment will affect the accuracy and conservation
properties of numerical scheme.

At present we can see numerous works done in the
field of IB method. A brief review of the works done in
this field is given here. As mentioned in previous
paragraph, C. Peskin introduced this technique first.
Afterwards Mohd-Yusof[3] developed a new momentum
forcing approach, different from traditional feedback
forcing. He applied momentum forcing discretely on the
boundary or inside the body. Later Fadlun et al.[4] used
this concept to the three dimensinal flow problems with a
modification that the forcing is applied in the fluid region
near the boundary rather than in the solid. That is, the
velocity at the first grid external to the body was obtained
by a linear interpolation of velocities at neighbouring grids
in fluid region.

Later Kim et al[5]. used the same forcing approach



proposed by Mohd-Yusof[3] and additional mass
source/sink was applied to the boundary cells to satisfy
the mass conservation. Recently, Wei-xi Huang[6] derived
a more accurate formulation of the mass source/sink for
the wvirtual cells in fluid crossed by an immersed
boundary.

Mittal and laccarino[8] reviewed different forcing
approaches used in IB method under two broad categories.
One is continuous forcing approach where forcing was
applied throughout the domain. The other is discrete
forcing approach whereforcing applied to the virtual cells
cut by an immersed boundary.

In the present study the "discrete forcing approach” is
used to impose boundary conditions. The momentum
forcing values are obtained by using the procedure given
by Kim et al.[5]. The Navier Stokes equations governing
the laminar viscous flow are solved using the fractional
step method. The following section gives brief description
of the method, which is followed by results and
discussions section. We compare our results with bench
mark problems to confirm the validity of our code.

2. METHODOLOGY

We considered full Navierequations assuming the fluid is
incompressible viscous and having constant properties.
Luckily the govering equations are independent of the
complexity of the geometry, the geometric complexity
comes into picture while imposing the boundary
conditions. The continuity and momentum equations in
non-dimensional form are given below.
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In the above equation J>s are the momentum forcing

components applied to the cell faces near the immersed

boundary. 4is the mass source/sink applied to the cells
containing immersed boundary to satisfy the mass
conservation.

We used well known fractional step method for solving
the governing equations. The four step procedure is
described below. Apseudo-pressure is used to correct the
velocity field, so that the continuity equation is satisfied
at each computational step. A second order,
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alternative-direction-implicit  (ADI) time advancement
scheme is used for time integration. The governing
equations are discretized using a 3 order Runge-Kutta
method (RK3) for convection terms and a 2™ order
Crank-Nicolson method for the diffusion terms.
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Where @, Viand Pr are the coefficients of the third

order Runge-Kutta method (RK3) and L{ui)and Ni) are
the linear (diffusion) and non-linear (convection) terms,
written in the index notation as follows.
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The intermediate velocity # is obtained in stepl, and it is

corrected in step 3, using the pseudo-pressure¢ obtained

in the step 2. The momentum forcing f'in discrete
forcing approach is determined by balancing the
discretization cquations after imposing the desired velocities
in the inertial term. That is if we want to obtain velocity

k . S .
U at a particular grid point then the momentum forcing

K L
S at that point is;
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Where U/ is obtained from the explicitly obtained
velocities in the fluid region, by interpolation. Either linear
or bilinear interpolation is applied based on position of the
forcing point with respect to boundary. The mass

source/sink 4" in equation (4) is obtained for the cells
crossed by the immersed boundary using intermediate
velocity components so that continuity is satisfied for
these virtual cells. Refer to Kim et al.5] for more general
description.

3. RESULTS AND DISCUSSIONS

3.1 FLoW AROUND A CIRCULAR CYLINDER

First we analysed two dimensional flow around a
circular cylinder. The domain details are as shown in the
Figure 1. The cylinder was placed at the vertical center of
channel with cylinder center is 2.5D from the inlet of
the channel. The channel is 14D along axial direction, 7D

Fig. 3 Streamlines of the steady flow around a circular cylinder for
different Reynolds numbers

along vertical direction, where D is the diameter of the
cylinder. The boundary conditions are as follows;

Inlet u=U,v=0

oulet =%
utle x o
ou
Top and bottom walls —=0,v=0
oy
Surface of cylinder u=v=0

The Reynolds number (Re=DU/v) of the flow is
based on the uniform inlet velocity U and the cylinder

diameter D . The numerical simulations are carried out for
low Reynolds numbers, Re=10, 20 and 40. Also we
obtained steady periodic flow at Reynolds number 83.
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Fig. 4 Instantaneous streamlines of the flow around a circular
cylinder for Re=83

z

Fig. 5 Streamlines starting from the spanwise planes x=0.05 and
x=3.95

We compared ournumerical results obtained using
unifrom grid 141 x 281 with those obtained from uniform
fine grid 281 x 561, the comparison is shown in the
Figure 2. Since there is no significant improvement in the
resultsobtained using fine grid we selected 141 x 281 grid
for the analysis.

Figure 3 shows -the steady state streamlines for

Table 1 Comparison of wake length and reattachment lengths for
flow around a cylinder

Nieuwstadt &
Keller 0.434 |27.96| 1.786 |43.37| 4.357 |53.34

Coutanceau &

Bouard 068 [3251 1.86 |448 ) 426 15334

Heand Doolen | 0.474 |26.89| 1.842 | 42.9 | 4490 [52.84

Mei and Shyy | 0.498 | 30.0 | 1.804 | 42.1 | 4.38 [50.12

Guo et. al. 0.533 |31.61| L.867 14227 44 |53.13

Present 058 |31.7| 1.87 | 424 | 44 |53.08
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Fig. 6 Axial velocity contours in planes x=0.5, 2.0 and 3.5
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Fig. 7 Comparison of velocities obtained numerically with that
obtained using CFX, along a horizontal line at x=2.0 and
y=0.25

Reynolds numbers 10, 20 and 40. In all cases a pair of
stationary recirculating vortexes found behind the cylinder
which grow bigger with the reynolds number. The wake
length L, the distance from rearmost point of the cylinder
to the end of the wake and the separation angle, O, are
measured. A comparison of present set of data with
previous computational and experimental data is given in
Table 1. Both the wake length and the separation angle
agree well with the results of previous studies for all
Reynolds numbers.

Figure 4. shows the instantaneous streamlines during
steady periodic flow at Reynolds number 83. This periodic
vortex flow was observed after sufficient number of
iterations (nondimensional time of 130).

3.2 BACKWARD-FACING-STEP FLOW

We extended our numerical analysis for three
dimensional flow cases like "backward-facing-step flow"
and "flow over a sphere". The bench mark problem
"backward-facing-step flow" is used for validating the
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Fig. 8 Lines comprising of the reattachment points along the
spanwise direction

Fig. 9 Iso-surface plot of flow over a sphere for Reynolds
number 100

present 3D numerical code. A duct with an inlet aspect
ratio a=W/h=8 is taken in order to compare the results
given by Nie and Armaly{15]. Here the step hieght h=H/2,
that will provide an expansion ratio of 2. The duct length
is taken as 10H and the step is located at 0 < z = 1.
The initial distribution of axial velocity (w) at inlet is the
one given by Shah and London[l], while the other
velocity components are set equal to zero.At the exit we
defined convective boundary conditons and no-slip
conditions are applied on the walls.The results obtained
using a regular grid of 80x41x20! for Reynolds number
100 are given below. Figure S, shows some streamlines
starting from the spanwise planes x=0.05 and 3.95,
indicating there is a recirculation zone downstream of the
step. Figure 6. shows axial velocity contours in different
planes along the duct.

Also we used commercial code CFX to solve this
problem with the same dimensions. The comaparison of
velocities obtained from numerical simulation and from
CFX simulation is given in Figure 7. The validity of
applying convective boundary condition at exit of the duct
can be seen in Figure 7, as the flow attains the steady

fully developed state at the exit of the duct.

The comparison of reattachment lengths obtained in
numerical computation, using comercial code CFX and
those given by Nie and Armaly[15] is shown in Figure 8.
The reattachment length is the distance from the step to
the point where the normal-gradient of the streamwise
velocity is zero. In the Figure we have shown the
rettachment lengths for the half of the spanwise direction
as it is symmetric about the center line.

3.3 FLOW OVER A SPHERE

As an another example of three-dimensional flow,
laminar flow over a sphere is simulated for Reynolds
numbers 10 and 100. A steady axisymmetric flow is
observed for both Reynolds numbers. The computational
domain used is 8D in axial direction and 4D in lateral
directions, with the sphere centre located at the centre of
cross-section at a distance 2.5D from the inlet, where D
is diameter of sphere. We have considered smaller domain
in order to reduce the computational effort and memory
requirements. The boundary conditions are extension of
those applied for the flow around the cylinder. Figure 9.
shows the iso-surface with contours plot of axisymmetric
flow for Reynolds number 100.

4, CONCLUSIONS

We developed numerical codes for 2D flow around a
cylinder and 3D flow over a sphere using frctional-step
procedure for solving Navier-stokes equations and B
method for imposing boundary conditions. The wake
length and the separation angles obtained in our
computations were compared with previous results, shows
good agreements. For the 3D case we compared the
reattachment  lengths  obtained from our numerical
computations, with those obtained from CFX and previous
research works. The comparison was excellent. Also we
compared the velocities in different positions in the duct
with CFX results. All the comparisons were satisfactory,
showing the reliabilty of our numerical code.
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