• Title/Summary/Keyword: Step motor

Search Result 660, Processing Time 0.032 seconds

The Effects of Forest Healing Anti-aging Program on Physical Health of the Elderly: A Pilot Study (산림치유 항노화 프로그램이 노인의 신체적 건강에 미치는 효과: 예비연구)

  • Baek, Ji-Eun;Shin, Ho-jin;Kim, Sung-Hyeon;Kim, Jae Yeon;Park, Sujin;Sung, Si-Yoon;Cho, Hwi-young;Hahm, Suk-Chan;Lee, Min-Goo
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.16 no.2
    • /
    • pp.81-90
    • /
    • 2021
  • PURPOSE: Aging causes a decrease in muscle mass and a change in posture, which reduces motor function and makes it difficult to perform daily activities independently. As these factors are closely related to the deterioration of the quality of life, it is very important to prevent and manage negative changes in the musculoskeletal system. Forest healing is a nature therapy course that maintains and promotes health using various environmental factors in a forest. The purpose of this study was to identify the effects of the forest healing anti-aging programs on the physical health of the elderly. METHODS: Ten elderly people participated in this study, as part of a forest healing anti-aging program for two days. Functional fitness, muscle strength, gait function, and balance were evaluated before and after the program. RESULTS: The number of arm curls, chair stands, and steps in a 2-min walk significantly increased (p < .05). 8-feet up & go time was significantly decreased (p < .05). Biceps brachii, quadriceps femoris, and calf muscle strength were significantly increased (p < .05). Gait velocity and cadence were significantly increased (p < .05). Step length, stride length, step time, swing time, stance time, and cycle time were significantly decreased (p < .05). Reaching distance in the lateral directions was significantly increased (p < .05). CONCLUSION: The forest healing anti-aging program improves the physical health of the elderly.

Vortex sheddings and Pressure Oscillations in Hybrid Rocket Combustion (하이브리드로켓 연소실의 와류발생과 연소압력 진동)

  • Park, Kyungsoo;Shin, Kyung-Hoon;Lee, Changjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.1
    • /
    • pp.40-47
    • /
    • 2013
  • The similarity in internal flow of solid and hybrid rocket suggests that hybrid rocket combustion can be susceptible to instability due to vortex sheddings and their interaction. This study focuses on the evolution of interaction of vortex generated in pre-chamber with other types of vortex in the combustor and the change of combustion characteristics. Baseline and other results tested with disks show that there are five different frequency bands appeared in spectral domain. These include a frequency with thermal lag of solid fuel, vortex shedding due to obstacles such as forward, backward facing step and wall vortices near surface. The comparison of frequency behavior in the cases with disk 1 and 3 reveals that vortex shedding generated in pre-chamber can interact with other types of vortex shedding at a certain condition. The frequency of Helmholtz mode is one of candidates resulting to a resonance when it was excited by other types of oscillation even if this mode was not discernable in baseline test. This selective mechanism of resonance may explain the reason why non-linear combustion instability occurs in hybrid rocket combustion.

Fatigue Life Prediction of Medical Lift Column utilizing Finite Element Analysis (유한요소해석을 통한 의료용 리프트 칼럼의 피로수명 예측)

  • Cheon, Hee-Jun;Cho, Jin-Rae;Yang, Hee-Jun;Lee, Shi-Bok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.3
    • /
    • pp.337-342
    • /
    • 2011
  • Medical lift column controlling the vertical position while supporting heavy eccentric load should have the high fatigue strength as well as the extremely low structural deflection and vibration in order to maintain the positioning accuracy. The lift column driven by a induction motor is generally in a three-step sliding boom structure and exhibits the time-varying stress distribution according to the up-and-down motion. This study is concerned with the numerical prediction of the fatigue strength of the lift column subject to the time-varying stress caused by the up-and-down motion. The stress variation during a motion cycle is obtained by finite element analysis and the fatigue life is predicted making use of Palmgren-miner's rule and S-N curves. In order to secure the numerical analysis reliability, a 3-D FEM, model in which the detailed lift column structure and the fitting parts are fully considered, is generated and the interfaces between lift column and pads are treated by the contact condition.

The Effects of a Task-Related Circuits Program on Functional Improvements in Stroke Patients (뇌졸중 환자에서 순환식 과제지향 프로그램이 기능 증진에 미치는 효과)

  • Cho, Gyu-Hang;Lee, Suk-Min;Woo, Young-Keun
    • Physical Therapy Korea
    • /
    • v.11 no.3
    • /
    • pp.59-70
    • /
    • 2004
  • The purpose of this study was to propose a task-related circuits program for stroke patients and to test the difference in functional improvements between patients undergoing conventional physical therapy and those participating in a task-related circuits exercise program. The subjects were 10 stroke in-patients of the Korea National Rehabilitation Center in Seoul. We measured the following variables: Motor Assessment Scale (MAS), Berg Balance Scale (BBS), Tone Assessment Scale (TAS), speed of gait, rate of step, physiological costs index, age, weight, height, site of lesion, onset day and whether the subject participated in an exercise program. Collected data were statistically analyzed by SPSS 10.0/PC using descriptive statistics, Mann-Whitney U test, Wilcoxon rank sum test and Spearman's correlation. The results of the experiment were as follows: (1) In the pre-test and post-test for function, there was not a statistical significance between the group partaking in a task-related circuits program and the group of conventional physical therapy (p>.05). (2) In the MAS, BBS and speed of gait test, the group undergoing conventional physical therapy showed a statistical significance (p<.05). (3) In the MAS, BBS, speed of gait, PCI, TAS (passive, associated reaction, TAS total score), the group of task-related circuits program showed a statistical significance (p<.05). As a result, the group participating in a task-related circuits program had a more functional improvement than the group participating in conventional physical therapy. Therefore, an intervention recommended for a stroke patient would be a task-related circuits program consisting of a longer session of each task for a more improved functional recovery.

  • PDF

Automation of Dobson Spectrophotometer(No.124) for Ozone Measurements (돕슨 분광광도계(No.124)의 오존 자동관측시스템화)

  • Kim, Jhoon;Park, Sang-Seo;Moon, Kyung-Jung;Koo, Ja-Ho;Lee, Yun-Gon;Miyagawa, Koji;Cho, Hi-Ku
    • Atmosphere
    • /
    • v.17 no.4
    • /
    • pp.339-348
    • /
    • 2007
  • Global Environment Laboratory at Yonsei University in Seoul ($37.57^{\circ}N$, $126.95^{\circ}E$) has carried out the ozone layer monitoring program in the framework of the Global Ozone Observing System of the World Meteorlogical Organization (WMO/GAW/GO3OS Station No. 252) since May of 1984. The daily measurements of total ozone and the vertical distribution of ozone amount have been made with the Dobson Spectrophotometer (No.124) on the roof of the Science Building on Yonsei campus. From 2004 through 2006, major parts of the manual operations are automated in measuring total ozone amount and vertical ozone profile through Umkehr method, and calibrating instrument by standard lamp tests with new hardware and software including step motor, rotary encoder, controller, and visual display. This system takes full advantage of Windows interface and information technology to realize adaptability to the latest Windows PC and flexible data processing system. This automatic system also utilizes card slot of desktop personal computer to control various types of boards in the driving unit for operating Dobson spectrophotometer and testing devices. Thus, by automating most of the manual work both in instrument operation and in data processing, subjective human errors and individual differences are eliminated. It is therefore found that the ozone data quality has been distinctly upgraded after automation of the Dobson instrument.

Development of Electric Actuator Position Control System for Automatic Shuttle Shifting of Tractor (트랙터의 전후진 자동 변속을 위한 전자식 액추에이터의 위치 제어 시스템 개발)

  • Choi, Chang-Hyun;Woo, Mi-Na;Lee, Dae-Hyun;Kim, Yong-Joo;Jeong, Jin-Hee
    • Journal of Biosystems Engineering
    • /
    • v.35 no.4
    • /
    • pp.224-230
    • /
    • 2010
  • The purpose of this study was to develop position control system of an electric actuator for automatic shuttle shifting of a tractor. The electric actuator was installed at the link of the forward-reverse gearshift of the tractor transmission, and controlled in the ranges of forward, neutral, and reverse positions. The position control system of the electric actuator was developed based on PID (Proportional Integral Derivative) controller and transfer function of the electric actuator. The coefficients of the PID controller were determined by Ziegler-Nichols (Z-N) method and optimized using simulation program. The prototype AMT (Automated Manual Transmission) test unit of the tractor was installed and used to evaluate the performance of the position control. The evaluation system for the control performance consisted of forward-reverse actuator, motor driver, and controller. The tests were conducted as the controlled positions of the actuator were changed from neutral position to forward, neutral, and reverse positions in sequence. The sequential tests were repeated 20 times. The operations of changing the gearshift were considered as the step response of the control system. Maximum overshoot, settling time, and steady-state error were analyzed. The results showed that performance of the position control system was reasonable and qualified. The maximum overshoots, the steady-state errors, and the settling times of the position control system were 10~20%, 1~5%, and 0.92~1.49 sec, respectively. The modifications of the electric actuator will be required to enhance the performance of position control during field operation.

Hydro-forming Process of Automotive Engine Cradle by Computer Aided Engineering (CAE) (컴퓨터 시뮬레이션(CAE)을 이용한 자동차용 엔진 크레들의 하이드로-포밍 공정 연구)

  • Kim, Kee-Joo;Choi, Byung-Ik;Sung, Chang-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.86-92
    • /
    • 2008
  • Recently, the use of tubes in the manufacturing of the automobile parts has increased and therefore many automotive manufactures have tried to use hydro-forming technology. The hydro-forming technology may cause many advantages to automotive applications in terms of better structural integrity of the parts, lower cost from fewer part count, material saving, weight reduction, lower spring-back, improved strength and durability and design flexibility. In this study, the whole process of front engine cradle (or front sub-frame) parts development by tube hydro-forming using steel material having tensile strength of 440MPa grade is presented. At the part design stage, it requires feasibility study and process design aided by CAE (Computer Aided Design) to confirm hydro-formability in details. Effects of parameters such as internal pressure, axial feeding and geometry shape on automotive sub-frame by hydro-forming process were carefully investigated. Overall possibility of hydro-formable sub-frame parts could be examined by cross sectional analyses. Moreover, it is essential to ensure the formability of tube material on every forming step such as pre-bending, preforming and hydro-forming. At the die design stage, all the components of prototyping tools are designed and interference with press is examined from the point of geometry and thinning.

HIPI Controller of IPMSM Drive using ALM-FNN (ALM-FNN을 이용한 IPMSM 드라이브의 HIPI 제어기)

  • Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.8
    • /
    • pp.57-66
    • /
    • 2009
  • The conventional fixed gain PI controller is very sensitive to step change of command speed, parameter variation and load disturbances. The precise speed control of interior permanent magnet synchronous motor(IPMSM) drive becomes a complex issue due to nonlinear coupling among its winding currents and the rotor speed as well as the nonlinear electromagnetic developed torque. Therefore, there exists a need to tune the PI controller parameters on-line to ensure optimum drive performance over a wide range of operating conditions. This paper proposes hybrid intelligent-PI(HIPI) controller of IPMSM drive using adaptive learning mechanism(ALM) and fuzzy neural network(FNN). The proposed controller is developed to ensure accurate speed control of IPMSM drive under system disturbances and estimation of speed using artificial neural network(ANN) controller. The PI controller parameters are optimized by ALM-FNN at all possible operating condition in a closed loop vector control scheme, The validity of the proposed controller is verified by results at different dynamic operating conditions.

Neural Ablation and Regeneration in Pain Practice

  • Choi, Eun Ji;Choi, Yun Mi;Jang, Eun Jung;Kim, Ju Yeon;Kim, Tae Kyun;Kim, Kyung Hoon
    • The Korean Journal of Pain
    • /
    • v.29 no.1
    • /
    • pp.3-11
    • /
    • 2016
  • A nerve block is an effective tool for diagnostic and therapeutic methods. If a diagnostic nerve block is successful for pain relief and the subsequent therapeutic nerve block is effective for only a limited duration, the next step that should be considered is a nerve ablation or modulation. The nerve ablation causes iatrogenic neural degeneration aiming only for sensory or sympathetic denervation without motor deficits. Nerve ablation produces the interruption of axonal continuity, degeneration of nerve fibers distal to the lesion (Wallerian degeneration), and the eventual death of axotomized neurons. The nerve ablation methods currently available for resection/removal of innervation are performed by either chemical or thermal ablation. Meanwhile, the nerve modulation method for interruption of innervation is performed using an electromagnetic field of pulsed radiofrequency. According to Sunderland's classification, it is first and foremost suggested that current neural ablations produce third degree peripheral nerve injury (PNI) to the myelin, axon, and endoneurium without any disruption of the fascicular arrangement, perineurium, and epineurium. The merit of Sunderland's third degree PNI is to produce a reversible injury. However, its shortcoming is the recurrence of pain and the necessity of repeated ablative procedures. The molecular mechanisms related to axonal regeneration after injury include cross-talk between axons and glial cells, neurotrophic factors, extracellular matrix molecules, and their receptors. It is essential to establish a safe, long-standing denervation method without any complications in future practices based on the mechanisms of nerve degeneration as well as following regeneration.

Low frequency Instability in Hybrid Rocket Post-chamber Configuration (연소실 형상 변화에 의한 하이브리드 로켓의 저주파수 연소불안정)

  • Park, Kyungsu;Lee, Changjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.1
    • /
    • pp.29-36
    • /
    • 2014
  • Hybrid rocket displays many different low frequency pressure oscillations during combustion. Thermal lag between solid and gas phase is the primary mechanism to trigger low frequency pressure oscillations of around 10Hz, and Helmholtz or $L^*$ mode also produces other types of low frequency oscillations above 10 Hz which is associated with the change in combustion volume. Since the flow characteristics in hybrid rocket is very similar to those in solid rocket combustion, it is not surprising to observe similar pressure oscillation behaviors. Experimental test shows that combustion pressure suddenly turns into to a big amplitude oscillation around 10Hz then followed by returning to an original pressure level after a short period combustion. Further investigations show that this instability is independent of the change in O/F ratio at all. One of the possible candidates is the vortex shedding dynamics over the backward step in the post combustion chamber. It is required to investigate the low frequency oscillation mechanism in the future study.