• Title/Summary/Keyword: Stemflow

Search Result 46, Processing Time 0.025 seconds

Effects of Thinning on Nutrient Input by Rainfall and Litterfall in Natural Hardwood Forest at Mt. Joongwang, Gangwon-do (강원도 중왕산 지역 천연활엽수림에서 간벌작업이 강우와 낙엽에 의한 양분 유입에 미치는 영향)

  • Jung, Mun-Ho;Lee, Don-Koo;Um, Tae-Won;Kim, Young-Soo;Kwon, Ki-Cheol;Jung, Kang-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • The objectives of this study were to compare nutrient natural input between thinned and unthinned natural hardwood stands at Mt. Joongwang, Pyongchang-gun, Gangwon-do. Throughfall, stemflow, A-layer and B-layer soil water as well as litterfall were sampled at two-week intervals during the period of June to October from 2002 to 2004. The amount of rainfall interception in thinned and unthinned natural hardwood stands was as 12% and 18%, respectively. The results indicated that there was no difference in annual nutrient input by rainfall between thinned and unthinned stands. $Na^+$, $Cl^-$ and $SO_4{^{2-}}$ concentrations of A-layer soil water in the unthinned stand were higher than those in the thinned stand. In the B-layer soil water, $Ca^{2+}$, $Cl^-$, $NO_3{^-}$ and $SO_4{^{2-}}$ concentrations in the unthinned stand were higher than those in thinned stand. Mean annual litterfall input was $2,706kg\;ha^{-1}$ in unthinned stand and $2,589kg\;ha^{-1}$ in thinned stand. Total-N input from litterfall was $50.28kg\;ha^{-1}yr^{-1}$ in the unthinned stand and $36.81kg\;ha^{-1}yr^{-1}$ in the thinned stand, while there was no difference in exchangeable cation input from litterfall between thinned and unthinned stands. Thus, the difference in nutrient inputs except for N by throughfall, stemflow and litterfall between the two stands was not influenced by thinning.

A Study on the net Precipitation in Korean Pine (Pinus koraiensis S. et Z.) Stand (잣나무 임분(林分)의 임내강우량(林內降雨量)에 관(關)한 연구(硏究))

  • Lee, Hyun Kyu
    • Journal of Korean Society of Forest Science
    • /
    • v.87 no.4
    • /
    • pp.562-570
    • /
    • 1998
  • This study was carried out to investigate the percentage of the net precipitation in Korean Pine(Pious koraiensis S. et Z.) stand separated by monthly, annually, the amount of rainfall and distance away from stem, at University of Sangji, Wonju, Kangwon province, during the period from April 1993 to October 1996. The average percentage of net precipitation showed 55.7% of the total precipitation, the minimum percentage of net precipitation was 45.7% in May and the maximum percentage was 62.9% in July. The average percentage of net precipitation at 0.3m far away from the stem showed 45.9% of the total precipitation and showed 60.3% at 0.6m distance. The average percentage of net precipitation within precipitation of 10mm and less showed 37.5% of tatoal precipitation and showed 70.9% within precipitation of 100mm and over. The relationship between percentage of through-fall and total precipitation were highly significant. It was estimated to be $Y_{(%)}=12.35LnX_{(mm)}+9.45$($R^2=0.735^{(**)}$). The relationship between stemflow and rainfall was estimated to be $Y_{({\ell})}=0.27X_{(mm)}-1.83$($R^2=0.921^{(**)}$). The relationship between percentage of net precipitation and total precipitation was estimated to be $Y_{(%)}=13.79LnX_{(mm)}+4.56$($R^2=0.946^{(**)}$) with significance at 1% level.

  • PDF

Chemical Characteristics of Rain Water at Ulsan Industrial Complex Area and Mt. Jiri Area (울산공단지역과 지리산지역 강우의 화학적 특성)

  • Seo, Dong-Jin;Yun, Seok-Lak;Moon, Hyeon-Sik;Lee, Chong-Gyu;Kim, Jong-Kab
    • Journal of agriculture & life science
    • /
    • v.44 no.6
    • /
    • pp.15-22
    • /
    • 2010
  • This study was carried out to investigate the characteristics of ions in rainwater by stem flow, through fall and rainfall in Pinus thunbergii forest in Ulsan industrial complex area and Mt. Jiri area. pH of rainwater in Ulsan industrial complex area was low as compared with those in Mt. Jiri area. EC of rainwater in Ulsan industrial complex area was mainly high and there was twice difference in stemflow and through fall as compared to Mt. Jiri area. The concentration of major ions in rainwater, especially $Ca^{2+}$ and $Mg^{2+}$ in stem flow were generally high at Ulsan industrial complex area, while anions were high in the order of ${SO_4}^{2-}>{NO_3}^{-}>Cl^-$ in both areas. There was a wide difference in ${SO_4}^{2-}$ concentration in the stem flow between both areas. ${SO_4}^{2-}$ from air pollutants will result into acidification of forest soils and thereafter cause damages on forest ecosystems.

Hydrophysical effect of vegetation cover factors on soil erosion (토양침식에 대한 식생피복 인자의 수문물리적 영향)

  • Seung Sook Shin;Sang Deog Park;Sang Jin Son
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.343-343
    • /
    • 2023
  • 식생피복(Vegetation cover)은 대기 중의 강우와 토양 사이에서 침식으로부터 표토를 보호하는 역할을 한다. 자유 낙하하는 강우의 물방울은 식생을 통과하면서 차단(interception), 수관통과(throughfall), 수간유하(stemflow)의 형태로 변화한다. 식생은 강우입자의 운동에너지와 수량을 감소시키고, 지표면에 도달하는 시간을 지연시킴에 따라 지표유출(overland flow) 저감에 기여한다. 유출수의 흐름과정에서 식물의 줄기, 낙엽, 뿌리 등은 유속을 감소시키는 장애물로 작용하여 궁극적으로 토양침식은 감소한다. 토양침식은 식생피복이 증가함에 따라 일반적으로 감소하며, 지수함수의 관계를 갖는다. 식생의 종류와 구조 그리고 잎의 모양 등에 따라 수문물리적인 반응이 달라진다. 캐노피를 갖는 지상식물(canopy cover plant)은 물방울의 운동에너지를 갖는 반면, 지피식물(ground cover plant)은 낙하고가 작기 때문에 운동에너지는 적으며, 특히 낙엽층은 지표면을 보호하여 토양침식의 저감효과가 더욱 크다. 산불지역의 식생피복에 따른 토양침식 측정 자료에 따르면, 강우운동에너지는 식생피복이 증가함에 따라 지상피복(canopy cover)에 의한 감소보다는 지면피복(ground cover)과 낙엽피복(litter cover)에 의한 감소효과가 상대적으로 컸다. 식생피복에 의해 차단되는 강우의 손실량보다 침투량 증가에 의한 손실량이 상대적으로 많았다. 낙엽피복에 대한 강우모의 실험 결과에 따르면, 낙엽의 피복율이 증가함에 따라 지수적으로 토양침식량은 감소하였다. 낙엽 피복율의 40% 이상은 토양침식량을 현격이 감소시킨 반면, 피복율의 70% 이상은 지표유출량을 현저히 감소시켰다. 낙엽 피복율이 70%이상이면, 유출계수가 33%가 감소하였으나, 토양침식민감도는 94%로 크게 감소하였다.

  • PDF

Searching the Natural Tracers for Separation of Runoff Components in a Small Forested Catchment (산림소유역에서 주요 유출성분 분석을 위한 천연추적자의 탐색)

  • Yoo, Jaeyun;Kim, Kyongha;Jun, Jaehong;Choi, Hyungtae;Jeong, Yongho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.4
    • /
    • pp.52-59
    • /
    • 2006
  • This study was conducted to find end-members and tracers which are effective to be applied in the End Member Mixing Analysis (EMMA) model for runoff separation at the Gwangneung coniferous forest catchment (13.6ha), Gyeonggido, Korea. We monitored three successive rainfall events during two weeks from June 26, 2005 to July 10, 2005, and analysed chemical properties of rainfall, throughfall, stemflow, groundwater and soil water considered as main components of storm runoff. The followings are the results of analyses of each component and tracer. Groundwater, soil water and rainfall (or throughfall) were dominant runoff components. Rainfall and groundwater were selected as main components for the two components-one tracer mixing model, and groundwater, soilwater and throughfall were selected as main components for the three components-two tracers mixing model. Tracers were selected from anion ($Cl^-$ and ${SO_4}^{2-}$), cation ($Na^+$, $K^+$, $Mg^{2+}$, and $Ca^{2+}$) and Acid Neutralizing Capacity (ANC) in event 1, 2, and 3. $Na^+$, $Ca^{2+}$ and ANC were selected in the two components-one tracer mixing model and ${SO_4}^{2-}-K^+$, ${SO_4}^{2-}-Na^+$, ${SO_4}^{2-}-Ca^{2+}$, ${SO_4}^{2-}$-ANC, and $Ca^{2+}$-ANC were selected in the three components-two tracers mixing model. Selected main runoff components and tracers can provide basic information to determine the contribution rate of each runoff component and identify the runoff process in a forest watershed.

Deposition Process of Sulfate and Elemental Carbon in Japanese and Thai Forests

  • Sase, Hiroyuki;Matsuda, Kazuhide;Visaratana, Thiti;Garivait, Hathairatana;Yamashita, Naoyuki;Kietvuttinon, Bopit;Hongthong, Bundit;Luangjame, Jesada;Khummongkol, Pojanie;Shindo, Junko;Endo, Tomomi;Sato, Keiichi;Uchiyama, Shigeki;Miyazawa, Masamitsu;Nakata, Makoto;Lenggoro, I. Wuled
    • Asian Journal of Atmospheric Environment
    • /
    • v.6 no.4
    • /
    • pp.246-258
    • /
    • 2012
  • Particulate matter deposited on leaf surfaces may cause erosion/abrasion of epicuticular wax and the malfunction of stomata. However, the deposition processes of particulate matter, such as elemental carbon (EC), has not been studied sufficiently in Asian forest ecosystems. Deposition processes for particulate ${SO_4}^{2-}$ and EC were studied in a Japanese cedar forest in Kajikawa, Niigata Prefecture, Japan, and in a dry evergreen forest and a dry deciduous forest in Sakaerat, Nakhon Ratchasima province, Thailand. The ${SO_4}^{2-}$ fluxes attributed to rainfall outside the forest canopy (RF), throughfall (TF), and stemflow (SF) showed distinct seasonalities at both sites, increasing from November to February at the Kajikawa site and in March/April at the Sakaerat site. Seasonal west/northwest winds in winter may transport sulfur compounds across the Sea of Japan to the Kajikawa site. At the Sakaerat site, pollutants suspended in the air or dry deposits from the dry season might have been washed away by the first precipitations of the wet season. The EC fluxes from RF and TF showed similar variations by season at the Kajikawa site, while the flux from TF was frequently lower than that from RF at the Sakaerat site. Particulate matter strongly adsorbed onto leaf surfaces is not washed away by rainfall and contributes to the EC flux. At the Kajikawa site, Japanese cedar leaf surfaces accumulated the highest levels of particulate matter and could not be neglected when calculating the total flux. When such leaf-surface particles were considered, the contribution of dry deposition to the total EC flux was estimated to be 67%, 77%, and 82% at the Kajikawa site, and at the evergreen and deciduous forests of the Sakaerat site, respectively. Leaf-surface particles must be included when evaluating the dry and total fluxes of particulate matter, in particular for water-insoluble constituents such as EC.