• Title/Summary/Keyword: Stem cell donor

Search Result 78, Processing Time 0.027 seconds

Effects of the Developmental Stage of Extract Donor Embryos on the Culture of Marine Medaka Oryzias dancena Embryonic Stem Cell-like Cells (배아추출물 공여 배아의 발생단계가 바다송사리(Oryzias dancena) 배아 줄기세포 유사세포의 배양에 미치는 영향)

  • Ryu, Jun Hyung;Gong, Seung Pyo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.50 no.2
    • /
    • pp.160-168
    • /
    • 2017
  • Optimizing the conditions for stem cell culture is an essential prerequisite for the efficient utilization of stem cells. In the culture of fish embryonic stem cells (ESCs) or ESC-like cells, embryo extracts are important for stable growth, but there is no rule for determining the developmental stage of the embryos used to obtain extracts. Therefore, this study investigated the effects of the developmental stage of extract donor embryos on the culture of Oryzias dancena ESC-like cells. O. dancena ESC-like cells were cultured in different media containing each of four types of embryo extract depending on the developmental stage of the extract donor embryos. Growth, morphology, colony-forming ability, alkaline phosphatase (AP) activity, and embryoid body (EB) formation of the cells were investigated. While the developmental stage of the extract donor embryos did not influence the growth, morphology, AP activity, or EB formation of ESC-like cells, colony-forming ability was affected and the pattern of the effects differed completely between the two ESC-like cells investigated. These results suggest that the developmental stage of extract donor embryos should be selected carefully for the culture of ESC-like cells, according to the research purpose and type of cell line.

Stem cell therapy in animal models of inherited metabolic diseases (유전성 대사 질환 동물 모델에서의 줄기 세포 치료)

  • Choi, Dongho;Lee, Dong Hwan;Jung, Sung-Chul
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.5 no.1
    • /
    • pp.116-125
    • /
    • 2005
  • Orthotopic liver transplantation is the treatment of choice for inherited metabolic diseases. However, the supply of donor organs is limiting and therefore many patients cannot benefit from this therapy. In contrast, hepatocytes can be isolated from a single donor liver. They can be transplanted into several recipients, and this procedure may help overcome the shortage of donor livers. A great deal of work with animal models indicates that hepatocytes transplanted into the liver or spleen can survive, function, and participate in the normal regenerative process. Recent clinical studies suggest that hepatocyte transplantation may be useful for bridging patients to whole organ transplantation and for providing metabolic support during liver failure and for replacing whole organ transplantation in certain inherited metabolic diseases. Nowadays, hepatocytes from various stem cells have been regarded as an another cell source for treatment of inherited metabolic diseases. Although cell therapy using stem cells for inherited metabolic disease patient has been accepted only as an experimental trial yet, hepatocytes from stem cells can solve a lot of obstacles in the treatment of inherited metabolic diseases.

  • PDF

Successful engraftment after infusion of multiple low doses of CD34+ cells from a poorly matched sibling donor in a patient with severe aplastic anemia

  • Kum, Chang Dae;Lee, Mi Jin;Park, Jun Eun
    • Journal of Yeungnam Medical Science
    • /
    • v.36 no.2
    • /
    • pp.148-151
    • /
    • 2019
  • The dose of CD34+ cells is known to influence the outcome of allogeneic peripheral blood stem cell (PBSC) and/or T-cell-depleted transplantation. A previous study proposed that $2{\times}10^6\;CD34+\;cells/kg$ is the ideal minimum dose for allogeneic transplantation, although lower doses did not preclude successful therapy. In the case we present here, CD34+ cells were collected from a matched sibling donor on the day of allogeneic hematopoietic stem cell transplantation; however, the number of cells was not sufficient for transplantation. Consequently, PBSCs were collected three additional times and were infused along with cord blood cells from the donor that were cryopreserved at birth. The cumulative dose of total nuclear cells and CD34+ cells was $15.9{\times}10^8\;cells/kg$ and $0.95{\times}10^6\;cells/kg$, respectively. White blood cells from this patient were engrafted on day 12. In summary, we report successful engraftment after infusion of multiple low doses of CD34+ cells in a patient with severe aplastic anemia.

Study on Distribution of Oct4 Expression and Change of Apoptosis in Nuclear Transfer Blastocyst using Oct4-Transfected Mesenchymal Stem Cells (Oct4-Transfection한 중간엽줄기세포 유래 핵이식 배반포의 Oct4 발현 분포 및 세포 자멸사의 변화에 관한 연구)

  • Lee, Won-Jae;Lee, Jeong-Hyeon;Rho, Gyu-Jin;Lee, Sung-Lim
    • Journal of Embryo Transfer
    • /
    • v.31 no.1
    • /
    • pp.81-88
    • /
    • 2016
  • There are various factors i.e. donor cell type, culture system as well as technical procedures which influence the pre-implantation embryonic development; however, may attempts have been made and still it is under investigation to improve the cloning efficiency using somatic cell nuclear transfer technique. It is has been investigated that stem cells like mesenchymal stem cell are able to more efficiently reprogram and reactivate the expression of early embryonic genes to promote nuclear transfer efficiency. In addition, Oct4 expression plays a pivotal role in early embryo development. In the present study, we investigated distribution of Oct4 expression and changes of apoptosis and total cell number in nuclear transfer blastocyst after using Oct4 transfected bone marrow stem cell as donor cells. Although Oct4-RFP expression was observed across blastocyst, more concentrated intensity was shown at hatched region in blastocyst on day 7. Reduction of apoptotic bodies was revealed in Oct4 transfected blastocyst by TUNEL staining, however, there was no significant difference in total cell number between Oct4 transfected and non-transfected nuclear transfer embryos. In conclusion, Oct4 transfected donor cells exhibited higher expression in hatching sight in day 7 blastocyst and were able to prevent apoptosis compared to non-transfected donor cells.

Hematopoietic stem cell transplantation in children with acute leukemia: similar outcomes in recipients of umbilical cord blood versus marrow or peripheral blood stem cells from related or unrelated donors

  • Yi, Eun-Sang;Lee, Soo-Hyun;Son, Meong-Hi;Kim, Ju-Youn;Cho, Eun-Joo;Lim, Su-Jin;Cheuh, Hee-Won;Yoo, Keon-Hee;Sung, Ki-Woong;Koo, Hong-Hoe
    • Clinical and Experimental Pediatrics
    • /
    • v.55 no.3
    • /
    • pp.93-99
    • /
    • 2012
  • Purpose: This study compared outcomes in children with acute leukemia who underwent transplantations with umbilical cord blood (UCB), bone marrow, or peripheral blood stem cells from a human leukocyte antigen (HLA)-matched related donor (MRD) or an unrelated donor (URD). Methods: This retrospective study included consecutive acute leukemia patients who underwent their first allogeneic hematopoietic stem cell transplantation (HSCT) at Samsung Medical Center between 2005 and 2010. Patients received stem cells from MRD (n=33), URD (n=46), or UCB (n=41). Results: Neutrophil and platelet recovery were significantly longer after HSCT with UCB than with MRD or URD ($p$ <0.01 for both). In multivariate analysis using the MRD group as a reference, the URD group had a significantly higher risk of grade III to IV acute graft-versus-host disease (GVHD; relative risk [RR], 15.2; 95% confidence interval [CI], 1.2 to 186.2; $p$=0.03) and extensive chronic GVHD (RR, 6.9; 95% CI, 1.9 to 25.2; $p$ <0.01). For all 3 donor types, 5-year event-free survival (EFS) and overall survival were similar. Extensive chronic GVHD was associated with fewer relapses (RR, 0.1; 95% CI, 0.04 to 0.6; $p$ <0.01). Multivariate analysis showed that lower EFS was associated with advanced disease at transplantation (RR, 3.2; 95% CI, 1.3 to 7.8; $p$ <0.01) and total body irradiation (RR, 2.1; 95% CI, 1.0 to 4.3; $p$=0.04). Conclusion: Survival after UCB transplantation was similar to survival after MRD and URD transplantation. For patients lacking an HLA matched donor, the use of UCB is a suitable alternative.

A study on differentiation potency of adult stem cells from pulp, periodontal ligament, and dental follicle to osteoblast (치수, 치주인대 및 치낭에서 얻어진 성체줄기세포의 조골세포로의 분화능력 평가에 관한 연구)

  • Lee, Joong-Kyou;Lee, Jae-Hoon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.36 no.1
    • /
    • pp.7-15
    • /
    • 2010
  • Complex human tissues harbor stem cells and precursor cells, which are responsible for tissue development or repair. Recently, dental tissues such as dental pulp, periodontal ligament (PDL), dental follicle have been identified as easily accessible sources of undifferentiated cells. These tissues contain mesenchymal stem cells that can be differentiate into bone, cartilage, fat or muscle by exposing them to specific growth conditions. In this study, the authors procured the stem cell from pulp, PDL, and dental follicle and differentiate them into osteoblast and examine the bone induction capacity. Dental pulp stem cell (DPSC), periodontal ligament stem cell (PDLSC), and dental follicle precursor cell (DFPC) were obtained from human 3rd molar and cultured. Each cell was analyzed for presence of stem cell by fluorescence activated cell sorter (FACs) against CD44, CD105 and CD34, CD45. Each stem cell was cultured, expanded and grown in an osteogenic culture medium to allow formation of a layer of extracellular bone matrix. Osteogenic pathway was checked by alizarin red staining, alkaline phosphatase (ALP) activity test and RT-PCR for ALP and osteocalcin (OCN) gene expression. According to results from FACs, mesenchymal stem cell existed in pulp, PDL, and dental follicle. As culturing with bone differentiation medium, stem cells were differentiated to osteoblast like cell. Compare with stem cell from pulp, PDL and dental follicle-originated stem cell has more osteogenic effect and it was assumed that the character of donor cell was able to affect on differential potency of stem cell. From this article, we are able to verify the pulp, PDL, and dental follicle from extracted tooth, and these can be a source of osteoblast and stem cell for tissue engineering.

Stem Cell Biotechnology for Cell Therapy

  • LEE Dong-Ree;KIM Ha Won
    • Biomolecules & Therapeutics
    • /
    • v.13 no.4
    • /
    • pp.199-206
    • /
    • 2005
  • Cell therapy (CT) is a group of techniques to treat human disorders by transplantation of cells which have been processed and propagated independent of the living body. Blood transfusion and bone marrow transplant have been the primary examples of cell therapy. With introduction of stem cell (SC) technologies, however, CT is perceived as the next generation of biologies to treat human diseases such as cancer, neurological diseases, and heart disease. Despite potential of cell therapy, insufficient guidelines have been implemented concerning safety test and regulation of cell therapy. This review addresses the safety issues to be resolved for the cell therapy, especially SC therapy, to be successfully utilized for clinical practice. Adequate donor cell screening must preceed to ensure safety in cell therapy. In terms of SC culture, controlled, standardized practices and procedures should be established. Further molecular studies should be done on SC development and differentiation to enhance safety level in cell therapy. Finally, animal model must be further installed to evaluate toxicity, new concepts, and proliferative potential of SC including alternative feeder layer of animal cells.

Nonmyeloablative Stem Cell Transplantation (비골수제거성 조혈모세포이식)

  • Hyun, Myung-Soo
    • Journal of Yeungnam Medical Science
    • /
    • v.19 no.1
    • /
    • pp.11-27
    • /
    • 2002
  • Allogenic hematopoietic stem cell transplantation is one of the effective therapy for several hematologic malignancies. Transplantation preparative regimen is designed to eradicate the patient's underlying disease and immunosuppress the patient adequately to prevent rejection of donor's hematopoietic stem cells. So, conventional myeloablative preparative regimens with high-dose chemotherapy or radiotherapy are related to high rate of morbidity and mortality. However, It has become clear that the high-dose therapy dose not eradicate the malignancy in some patients, and that the therapeutic benefit of allogenic transplantation is largely related to graft-versus-leukemia/graft-versus-tumor (GVL/GVT) effect. An new approach is to utilize less toxic, nonmyeloablative preparative regimens to achieve engraftment and allow GVL/GVT effects to develop. This strategy reduces the risk of treatment-related mortality and allows transplantation for elderly and those with comorbidities that preclude high-dose chemoradiotherapy.

  • PDF

Xenotransplantation of Pig Spermatogonia into Mouse Testis

  • 이미숙;최윤정;권득남;김진회
    • Proceedings of the KSAR Conference
    • /
    • 2003.06a
    • /
    • pp.82-82
    • /
    • 2003
  • The objective of the present study was to investigate the survival effect after transplantation of pig spermatogonia cells into mouse testis. Donor cells were collected from porcine testis and the isolated spermatogonial stem cells were labeled with a fluorescent marker before transplantation and transplanted into testes of busulfan-treated recipient mice. Testes were examined for the presence and localization of labeled donor cells immediately after transplantation or every week for 4 wk. Transplanted germ cells were present in the seminiferous epithelium at 4 weeks after the transplantation, but any differentiating porcine-derived cells were not detected in mouse testis. These results indicate that porcine-derived spermatogonial stem cells can be survived in the recipient, but suggest that porcine-derived male stem cells can not proceed to further differentiating step without helping of immunosuppressor agents.

  • PDF

A Simple Method for Cat Bone Marrow-derived Mesenchymal Stem Cell Harvesting

  • Jin, Guang-Zhen;Lee, Young-Soo;Choi, Eu-Gene;Cho, Kyu-Woan;Kong, Il-Keun
    • Journal of Embryo Transfer
    • /
    • v.23 no.2
    • /
    • pp.127-131
    • /
    • 2008
  • Bone marrow (BM) cell harvesting is a crucial element in the isolation of mesenchymal stem cells (MSCs). A simple method for harvesting cat BM cells is described. The results show that a large number of BM cells can rapidly be harvested from the cat by this simple procedure. MSCs prepared by density-gradient method were spindle-shaped morphology with bipolar or polygonal cell bodies and strongly positive for CD9 and CD44 and negative for CD18 and CD45-like. They were capable of differentiation to adipocytic and osteocytic phenotypes when exposed to appropriate induction media. The advantages of this method are its rapidity, simplicity, low invasiveness, and low donor attrition and good outcome.