Browse > Article
http://dx.doi.org/10.5657/KFAS.2017.0160

Effects of the Developmental Stage of Extract Donor Embryos on the Culture of Marine Medaka Oryzias dancena Embryonic Stem Cell-like Cells  

Ryu, Jun Hyung (Department of Fisheries Biology, Pukyong National University)
Gong, Seung Pyo (Department of Marine Biomaterials and Aquaculture, Pukyong National University)
Publication Information
Korean Journal of Fisheries and Aquatic Sciences / v.50, no.2, 2017 , pp. 160-168 More about this Journal
Abstract
Optimizing the conditions for stem cell culture is an essential prerequisite for the efficient utilization of stem cells. In the culture of fish embryonic stem cells (ESCs) or ESC-like cells, embryo extracts are important for stable growth, but there is no rule for determining the developmental stage of the embryos used to obtain extracts. Therefore, this study investigated the effects of the developmental stage of extract donor embryos on the culture of Oryzias dancena ESC-like cells. O. dancena ESC-like cells were cultured in different media containing each of four types of embryo extract depending on the developmental stage of the extract donor embryos. Growth, morphology, colony-forming ability, alkaline phosphatase (AP) activity, and embryoid body (EB) formation of the cells were investigated. While the developmental stage of the extract donor embryos did not influence the growth, morphology, AP activity, or EB formation of ESC-like cells, colony-forming ability was affected and the pattern of the effects differed completely between the two ESC-like cells investigated. These results suggest that the developmental stage of extract donor embryos should be selected carefully for the culture of ESC-like cells, according to the research purpose and type of cell line.
Keywords
Embryonic Stem Cells; Fish; Embryo Extracts; Culture;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Ohkubo N and Matsubara T. 2002. Sequential utilization of free amino acids, yolk proteins and lipids in developing eggs and yolk-sac larvae of barfin flounder, Verasper moseri. Mar Biol 140, 187-196. http://dx.doi.org/10.1007/s002270100647.   DOI
2 Pera MF, Reubinoff B and Trounson A. 2000. Human embryonic stem cells. J Cell Sci 113, 5-10.
3 Ronnestad I and Fyhn HJ. 1993. Metabolic aspects of free amino acids in developing marine fish eggs and larvae. Rev Fish Sci 1, 239-259. http://dx.doi.org/10.1080/10641269309388544.   DOI
4 Schimmang T. 2007. Expression and functions of FGF ligands during early otic development. Int J Dev Biol 51, 473-481. http://dx.doi.org/10.1387/ijdb.072334ts.   DOI
5 Skottman H and Hovatta O. 2006. Culture conditions for human embryonic stem cells. Reproduction 132, 691-698. http://dx.doi.org/10.1530/rep.1.01079.   DOI
6 Song HY, Nam YK, Bang IC and Kim DS. 2009. Embryogenesis and early ontogenesis of a marine medaka, Oryzias dancena. Kor J Ichthyol 21, 227-238.
7 Thomson JA, Kalishman J, Golos TG, Durning M, Harris CP, Becker RA and Hearn JP. 1995. Isolation of a primate embryonic stem cell line. Proc Natl Acad Sci U S A 92, 7844-7848. http://dx.doi.org/10.1073/pnas.92.17.7844.   DOI
8 Wong TT, Tesfamichael A and Collodi P. 2013. Production of zebrafish offspring from cultured female germline stem cells. PloS One 8:e62660. http://dx.doi.org/10.1371/journal.pone.0062660.   DOI
9 Assouline B, Nguyen V, Mahe S, Bourrat F and Scharfmann R. 2002. Development of the pancreas in medaka. Mech Dev 117, 299-303. http://dx.doi.org/10.1016/S0925-4773(02)00190-9.   DOI
10 Alvarez MC, Bejar J, Chen S and Hong Y. 2007. Fish ES cells and applications to biotechnology. Mar Biotechnol 9, 117-127. https://dx.doi.org/10.1007/s10126-006-6034-4.   DOI
11 Bejar J, Hong Y and Alvarez MC. 2002. An ES-like cell line from the marine fish Sparus aurata: characterization and chimaera production. Transgenic Res 11, 279-289. https://dx.doi.org/10.1023/A:1015678416921.   DOI
12 Bradford CS, Sun L and Barnes DW. 1994. Basic fibroblast growth factor stimulates proliferation and suppresses melanogenesis in cell cultures derived from early zebrafish embryos. Mol Mar Biol Biotechnol 3, 78-86.
13 Chen SL, Sha ZX and Ye HQ. 2003a. Establishment of a pluripotent embryonic cell line from sea perch (Lateolabrax japonicus) embryo. Aquaculture 218, 141-151. http://dx.doi.org/10.1016/S0044-8486(02)00570-7.   DOI
14 Chen SL, Ye H, Sha Q and Shi CY. 2003b. Derivation of a pluripotent embryonic cell line from red sea bream blastulas. J Fish Biol 63, 795-805. http://dx.doi.org/10.1046/j.1095-8649.2003.00192.x.   DOI
15 Hanington PC, Patten SA, Reaume LM, Waskiewicz AJ, Belosevic M and Ali DW. 2008. Analysis of leukemia inhibitory factor and leukemia inhibitory factor receptor in embryonic and adult zebrafish (Danio rerio). Dev Biol 314, 250-260. http://dx.doi.org/10.1016/j.ydbio.2007.10.012.   DOI
16 Cucina A, Biava PM, D'Anselmi F, Coluccia P, Conti F, di Clemente R, Miccheli A, Frati L, Gulino A and Bizzarri M. 2006. Zebrafish embryo proteins induce apoptosis in human colon cancer cells (Caco2). Apoptosis 11,1617-1628. https://dx.doi.org/10.1007/s10495-006-8895-4.   DOI
17 Dash C, Routray P, Tripathy S, Verma DK, Guru BC, Meher PK, Nandi S and Eknath AE. 2010. Derivation and characterization of embryonic stem-like cells of Indian major carp Catla catla. J Fish Biol 77, 1096-1113. https://dx.doi.org/10.1111/j.1095-8649.2010.02755.x.   DOI
18 Evans MG and Kaufman MH. 1981. Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154-156. https://dx.doi.org/10.1038/292154a0.   DOI
19 Ho SY, Goh CW, Gan JY, Lee YS, Lam MK, Hong N, Hong Y, Chan WK and Shu-Chien AC. 2014. Derivation and longterm culture of an embryonic stem cell-like line from zebrafish blastomeres under feeder-free condition. Zebrafish 11, 407-420. http://dx.doi.org/10.1089/zeb.2013.0879.   DOI
20 Holen E and Hamre K. 2003. Towards obtaining long term embryonic stem cell like cultures from a marine flatfish, Scophtalmus maximus. Fish Physiol Biochem 29, 245-252. http://dx.doi.org/10.1023/B:FISH.0000045725.01192.44.   DOI
21 Hong Y and Schartl M. 1996. Establishment and growth responses of early medaka fish (Oryzias latipes) embryonic cells in feeder layer-free cultures. Mol Mar Biol Biotechnol 5, 93-104.
22 Lu J, Hou R, Booth CJ, Yang SH and Snyder M. 2006. Defined culture conditions of human embryonic stem cells. Proc Natl Acad Sci U.S.A. 103, 5688-5693. http://dx.doi.org/doi:10.1073/pnas.0601383103.   DOI
23 Collodi P and Barnes DW. 1990. Mitogenic activity from trout embryos. Proc Natl Acad Sci U S A 87, 3498-3502. http://dx.doi.org/10.1073/pnas.87.9.3498.   DOI
24 Hong Y, Winkler C and Schartl M. 1996. Pluripotency and differentiation of embryonic stem cell lines from the medakafish (Oryzias latipes). Mech Dev 60, 33-44. http://dx.doi.org/10.1016/S0925-4773(96)00596-5.   DOI
25 Ivanova N, Dobrin R, Lu R, Kotenko I, Levorse J, DeCoste C, Schafer X, Lun Y and Lemischka IR. 2006. Dissecting selfrenewal in stem cells with RNA interference. Nature 442, 533-538. http://dx.doi.org/10.1038/nature04915.   DOI
26 Lee D, Kim MS, Nam YK, Kim DS and Gong SP. 2013. Establishment and characterization of permanent cell lines from Oryzias dancena embryos. Fish Aquat Sci 16, 177-185. http://dx.doi.org/10.5657/FAS.2013.0177.   DOI
27 Lee D, Ryu JH, Lee ST, Nam YK, Kim DS and Gong SP. 2015. Identification of embryonic stem cell activities in an embryonic cell line derived from marine medaka (Oryzias dancena). Fish Physiol Biochem 41, 1569-1576. http://dx.doi.org/10.1007/s10695-015-0108-z.   DOI
28 Martin GR. 1981. Isolation of a pluripotent cell line from mouse embryo cultures in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U.S.A. 78, 7634-7638. http://dx.doi.org/10.1073/pnas.78.12.7634.   DOI
29 Na YR, Seok SH, Kim DJ, Han JH, Kim TH, Jung H and Park JH. 2009. Zebrafish embryo extracts promote sphere-forming abilities of human melanoma cell line. Cancer Sci 100, 1429-1433. http://dx.doi.org/10.1111/j.1349-7006.2009.01218.x.   DOI
30 Maures T, Chan SJ, Xu B, Ding J, Sun H and Duan C. 2002. Structural, biochemical, and expression analysis of two distinct insulin-like growth factor (IGF)-I receptors and their ligands in zebrafish. Endocrinology 143, 1858-1871. http://dx.doi.org/10.1210/endo.143.5.8768.   DOI