• Title/Summary/Keyword: Stellar

Search Result 939, Processing Time 0.022 seconds

SEARCH FOR DEBRIS DISKS BY AKARI AND IRSF

  • Takeuchi, Nami;Ishihara, Daisuke;Kaneda, Hidehiro;Oyabu, Shinki;Kobayashi, Hiroshi;Nagayama, Takahiro;Onaka, Takashi;Fujiwara, Hideaki
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.73-75
    • /
    • 2017
  • Debris disks are important observational clues to understanding on-going planetary system formation. They are usually identified by significant mid-infrared excess on top of the photospheric emission of a central star on the basis of prediction from J-, H-, and Ks-band fluxes and the stellar model spectra. For bright stars, 2MASS near-infrared fluxes suffer large uncertainties due to the near-infrared camera saturation. Therefore we have performed follow-up observations with the IRSF 1.4 m near-infrared telescope located in South Africa to obtain accurate J-, H-, and Ks-band fluxes of the central stars. Among 754 main-sequence stars which are detected in the AKARI $18{\mu}m$ band, we have performed photometry for 325 stars with IRSF. As a result, we have successfully improved the flux accuracy of the central stars from 9.2 % to 0.5 % on average. Using this dataset, we have detected $18{\mu}m$ excess emission from 57 stars in our samples with a $3{\sigma}$ level. We find that some of them have high ratios of the excess to the photospheric emission even around very old stars, which cannot be explained by the current planet-formation theories.

Kinematics and Geometrical Structure of the Planetary Nebula NGC 6881 (행성상 성운 NGC 6881의 운동학적 특성과 기하학적 구조)

  • Lee, Sang-Min;Hyung, Siek
    • Journal of the Korean earth science society
    • /
    • v.28 no.7
    • /
    • pp.847-856
    • /
    • 2007
  • The Planetary nebula NGC 6881 displays quadrupole morphology and it also has a jet feature in its image. We investigated the line profiles of the optical region spectral emission lines, using the Hamilton Echelle Spectrograph (HES) at the Lick observatory. The HES data obtained in this study was the radiation coming from the inner region within the diameter of 4 second of arc. Expansion velocity was obtained, based on the strong emission line profiles of e.g. H, Hel, Hell, [OIII], [NII], [ArIII], [SII], and [SIII}, using the IRAF and StarLink/Dipso reduction packages. The HI recombination lines showed one single peak profile, while the He and forbidden strong lines displayed double peaks. The results of this study show that the outflow velocity of gas increases radially outwards due to the central stellar radiation pressure. It was concluded that three central rings appeared in the HST image are the result of a combined structure of bipolar cones (seen in e.g. HI lines) and a ring (seen in He, [SIII] lines) in projection.

Three Body Problem and Formation of Binary System (3체 문제와 연성계의 형성)

  • Jae Woo Park;Kyu Hong Choi;Kyong Chol Chou
    • Journal of Astronomy and Space Sciences
    • /
    • v.2 no.1
    • /
    • pp.19-33
    • /
    • 1985
  • The singularities of differential Newtonian equation of motion in three body problem cause the loss of accuracy and the considerable increase of the computer time. These singularities could be eliminated during the process of regularization to transform the independent variables and the coordinate of Newtonian equations of motion. In this study, we calculated the positions and velocities of three body along the time scale to find out the unique solution of regularized Newtonian equations of motion with the $5^{th}$ order Runge-Kutta method by assuming the suitable initial velocities and positions. As the results of these calculations it is shown that the tripe stellar system eventually distintegrated, two of them formed a binary, and the last one escaped from this system with a hyperbolic orbit. This may suggest one possible explanation for the binary formation.

  • PDF

Modeling Gamma-Ray Emission From the High-Mass X-Ray Binary LS 5039

  • Owocki, Stan;Okazaki, Atsuo;Romero, Gustavo
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.1
    • /
    • pp.51-55
    • /
    • 2012
  • A few high-mass X-ray binaries-consisting of an OB star plus compact companion-have been observed by Fermi and ground-based Cerenkov telescopes like High Energy Stereoscopic System (HESS) to be sources of very high energy (VHE; up to 30 TeV) ${\gamma}$-rays. This paper focuses on the prominent ${\gamma}$-ray source, LS 5039, which consists of a massive O6.5V star in a 3.9-day-period, mildly elliptical ($e{\approx}0.24$) orbit with its companion, assumed here to be an unmagnetized compact object (e.g., black hole). Using three dimensional smoothed particle hydrodynamics simulations of the Bondi-Hoyle accretion of the O-star wind onto the companion, we find that the orbital phase variation of the accretion follows very closely the simple Bondi-Hoyle-Lyttleton (BHL) rate for the local radius and wind speed. Moreover, a simple model, wherein intrinsic emission of ${\gamma}$-rays is assumed to track this accretion rate, reproduces quite well Fermi observations of the phase variation of ${\gamma}$-rays in the energy range 0.1-10 GeV. However for the VHE (0.1-30 TeV) radiation observed by the HESS Cerenkov telescope, it is important to account also for photon-photon interactions between the ${\gamma}$-rays and the stellar optical/UV radiation, which effectively attenuates much of the strong emission near periastron. When this is included, we find that this simple BHL accretion model also quite naturally fits the HESS light curve, thus making it a strong alternative to the pulsar-wind-shock models commonly invoked to explain such VHE ${\gamma}$-ray emission in massive-star binaries.

STELLAR POPULATION SYNTHESIS OF THE ELLIPTICAL GALAXY NGC 4649 (타원은하 NGC 4649의 종족합성)

  • 천문석;김문환;손영종
    • Journal of Astronomy and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.175-190
    • /
    • 2001
  • We investigated population of the elliptical galaxy NGC 4649 using the spectral synthesis technique based on the linear program in the spectral regions between $3160\AA$to $10800\AA$. We used the spectral data of stars obtained by Gunn & Striker (1983), and the integrated spectrum of NGC 4649 observed by Bertola et al. (1982). Among four models with different main sequence turn-off points, G8-K0V main sequence turn-off model is best fitted to the integrated spectrum of NGC 4649. We also found that super metal rich K giants are needed to describe the absorption lines in the long wavelength regions of integrated spectrum of NGC 4649. The mass to absolute light ratio obtained from the spectral synthesis is ~ 20 similar to those calculated dynamically.

  • PDF

RAMAN SPECTROSCOPY IN SYMBIOTIC STARS (공생별에서 라만 산란선의 형성)

  • LEE HEE-WON
    • Publications of The Korean Astronomical Society
    • /
    • v.15 no.spc1
    • /
    • pp.103-112
    • /
    • 2000
  • Symbiotic stars are known as binary systems of a giant with heavy mass loss and a white dwarf accompanied by an emission nebula. They often show bipolar nebulae, and are believed to form an accretion disk around the white dwarf component by attracting the slow but heavy stellar wind around the giant companion. However, the existence and physical properties of the accretion disk in these systems still remain controversial. Unique to the spectra of symbiotic stars is the existence of the symbiotic bands around $6830{\AA}$ and $7088{\AA}$, which have been identified by Schmid (1989) as the Raman scattered features of the O VI $1032{\AA}$ and $1038{\AA}$ doublet by atomic hydrogen. Due to the incoherency of the Raman scattering, these features have very broad profiles and they are also strongly polarized. In the accretion disk emission model, it is expected that the Raman features are polarized perpendicular to the binary axis and show multiple peak structures in the profile, because the neutral scatterers located near the giant component views the accretion disk in the edge-on direction. Assuming the presence of scattering regions outflowing in the polar directions, we may explain the additional red wing or red peak structure, which is polarized parallel to the binary axis. We argue that in the accretion disk emission model it is predicted that the profile of the Raman feature around $6830{\AA}$ is different from the profile of the $7088{\AA}$ because the O VI line optical depth varies locally around the white dwarf component. We conclude that the Raman scattered features are an important tool to investigate the physical conditions and geometrical configuration of the accretion disk in a symbiotic star.

  • PDF

A NEW AUTO-GUIDING SYSTEM FOR CQUEAN

  • CHOI, NAHYUN;PARK, WON-KEE;LEE, HYE-IN;JI, TAE-GEUN;JEON, YISEUL;IM, MYUNGSHI;PAK, SOOJONG
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.3
    • /
    • pp.177-185
    • /
    • 2015
  • We develop a new auto-guiding system for the Camera for QUasars in the EArly uNiverse (CQUEAN). CQUEAN is an optical CCD camera system attached to the 2.1-m Otto-Struve Telescope (OST) at McDonald Observatory, USA. The new auto-guiding system differs from the original one in the following: instead of the cassegrain focus of the OST, it is attached to the finder scope; it has its own filter system for observation of bright targets; and it is controlled with the CQUEAN Auto-guiding Package, a newly developed auto-guiding program. Finder scope commands a very wide field of view at the expense of poorer light gathering power than that of the OST. Based on the star count data and the limiting magnitude of the system, we estimate there are more than 5.9 observable stars with a single FOV using the new auto-guiding CCD camera. An adapter is made to attach the system to the finder scope. The new auto-guiding system successfully guided the OST to obtain science data with CQUEAN during the test run in 2014 February. The FWHM and ellipticity distributions of stellar profiles on CQUEAN, images guided with the new auto-guiding system, indicate similar guiding capabilities with the original auto-guiding system but with slightly poorer guiding performance at longer exposures, as indicated by the position angle distribution. We conclude that the new auto-guiding system has overall similar guiding performance to the original system. The new auto-guiding system will be used for the second generation CQUEAN, but it can be used for other cassegrain instruments of the OST.

High Mass X-ray Binary and IGOS with IGRINS

  • Chun, Moo-Young;Moon, Dae-Sik;Jeong, Ueejeong;Yu, Young Sam
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.95-95
    • /
    • 2014
  • The mass measurement of neutron stars or black holes is of fundamental importance in our understanding of the evolution of massive stars and core-collapse supernova explosions as well as some exotic physics of the extreme conditions. Despite the importance, however, it's very difficult to measure mass of these objects directly. One way to do this, if they are in binary systems, to measure their binary motions (i.e., Doppler shifts) which can give us direct information on their mass. Recently many new highly-obscured massive X-ray binaries have been discovered by new hard X-ray satellites such as INTEGRAL and NuSTAR. The new highly-obscured massive X-ray binaries are faint in the optical, but bright in the infrared with many emission lines. Based on the near-infrared spectroscopy, one can first understand the nature of stellar companions to the compact objects, determining its spectral types and luminosity classes as well as mass losses and conditions of (potential) circumstellar material. Next, spectroscopic monitoring of these objects can be used to estimate the mass of compact objects via measuring the Doppler shifts of the lines. For the former, broad-band spectroscopy is essential; for the latter, high-resolution spectroscopy is critical. Therefore, IGRINS appears to be an ideal instrument to study them. An IGRINS survey of these new highly-obscured massive X-ray binaries can give us a rare opportunity to carry out population analyses for understanding the evolution of massive binary systems and formation of compact objects and their mass ranges. In this talk, we will present a sample near-infrared high resolution spectra of HMXB, IGR J19140+0951 and discuss about its spectral feature. These spectra are obtained on 13th July, 2014 from IGRINS commissioning run at McDonald 2.7m telescope. And at final, we will introduce the upgrade plan of IGRINS Operation Software (IGOS), to gather the input from IGRINS observer.

  • PDF

DEUTERATED METHANOL (CH3OD) IN THE HOT CORE OF THE MASSIVE STAR-FORMING REGION DR21 (OH) (무거운 별 탄생 지역인 DR21(OH) 천체에 대한 중수소화된 메탄올(CH3OD) 관측연구)

  • Minh, Young Chol
    • Publications of The Korean Astronomical Society
    • /
    • v.29 no.2
    • /
    • pp.29-34
    • /
    • 2014
  • We have observed the deuterated methanol, $CH_3OD$, toward the hot core MM1 in the massive star-forming region DR21 (OH) using the Submillimeter Array with a high angular resolution of about 1 arcsecond. The position of the hot core associated with the sub-core MM1a was confirmed to coincide with the continuum peak where an embedded young stellar object is located. The column density of $CH_3OD$ was found to be about $(2{\pm}1){\times}10^{16}cm^{-2}$ toward the MM1a center. The abundance ratio $CH_3OD/CH_3OH$ was measured to be ~ 0.45, which is about the median value for low mass star-forming cores but much larger than those of the massive star-forming cores. The ratio is believed to change depending on, for example, the chemical condition, the temperature and the density of the source. This ratio may further depend on the evolutionary phase especially in the massive-star-forming cores. The sub-core MM1a is thought to be in the very early phase of star formation. This large abundance ratio found in this source indicates that even the massive star-forming cores, during a relatively short period in the very early stage of star formation, may also show a chemical state resulted from the cold and dense pre-collapsing phase, the enhanced deuteration as found in low mass star-forming cores.

A MONTE CARLO STUDY OF FLUX RATIOS OF RAMAN SCATTERED O VI FEATURES AT 6825 Å AND 7082 Å IN SYMBIOTIC STARS

  • Lee, Young-Min;Chang, Seok-Jun;Heo, Jeong-Eun;Hong, Chae-Lin;Lee, Hee-won
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.57.3-58
    • /
    • 2016
  • A symbiotic star is a wide binary system consisting of a hot white dwarf and a mass losing giant, where the giant loses its material in the form of a slow stellar wind resulting in accretion onto the white dwarf through gravitational capture. Symbiotic stars are known to exhibit unique spectral features at 6825 and 7082, which are formed from O VI 1032 and 1038 through Raman scattering with atomic hydrogen. In this Monte Carlo study we investigate the flux ratio of 6825 and 7082 in a neutral region with a geometric shape of a slab, cylinder and sphere. By varying the amount of neutral hydrogen parametrized by the column density along a specified direction, we compute and compare the flux ratio of Raman scattered O VI 6825 and 7082. In the column density around 1020 cm-2, flux ratio changes in a complicated way, rapidly decreasing from the optically thin limit to unity the optically thick limit as the column density increases. It is also notable that when the neutral region is of a slab shape with the O VI source outside the slab, the optically thick limit is less than unity, implying a significant fraction of O VI photons escape through Rayleigh scattering near the boundary. We compare our high resolution CFHT data of HM Sge and AG Dra with the data simulated with finite cylinder models confirming that 'S' type symbiotic tend to be characterized by thicker HI region that 'D' type counterparts. It is expected that this study will be useful in interpretation of the clear disparity of Raman O VI 6825 and 7082 profiles, which will shed much light on the kinematics and the asymmetric distribution of O VI material around the hot white dwarf.

  • PDF