• Title/Summary/Keyword: Steinernema carpocapsae All과 포천 계통

Search Result 5, Processing Time 0.015 seconds

Effect of Entomopathogenic Nematodes on Egg Mass Formation by the Northern Root-knot Nematode, Meloidogyne hapia (곤충병원성 선충이 당근뿌리혹선충의 난낭 형성에 미치는 영향)

  • 김형환;추호렬;조명래;전흥용;임명순
    • Korean journal of applied entomology
    • /
    • v.41 no.3
    • /
    • pp.225-231
    • /
    • 2002
  • The entomopathogenic nematodes, Steinernema carpocapsae All strain (ScA), S.glaseri NC strain (SgN) and H. bacteriophora NC 1 strain (HbN), were evaluated for the effects on egg mass formation by the northern root-knot nematode, Meloidogyne hapla in pot experiment using tomato. In the first experiment, 2.5$\times$10$^{5}$ infective juveniles (Ijs) of entomopathogenic nematodes were inoculated to 100 g of the soil infected with ca. 450 Ijs of M. hapla/100 ㎤ in 150 $mell$ container. The number of egg mass was significantly decreased to 9.4-36.5 in ScA, to 5.7-24.7 in SgN and to 11.2-16.0 in HbN treatments compared with 62.5 in M.hapla alone. In the second experiment, ScA and S.carpocapsae Pocheon strain (ScP) and SgN and S.glaseri Dongrae strain (SgD) were treated to 350 g of the soil infected with 100, 200 M.hapla larvae/100 ㎤ in 450 $mell$ container The entomopathogenic nematodes were inoculated at the rate of 2,020 Ijs and 1.6$\times$105 Ijs in 350 g soil. The number of egg mass of M.hapla were significantly decreased in the entomopathogenic nematode treatments compared with M.hapla alone although no differences were observed among Steinernema species, strains, or infection concentrations. Treatments of entomopathogenic nematodes 3 days before M.hapla inoculation were more effective on reduction of egg mass formation than those of 3 days after M.hapla treatments. Growth of tomato was not affected by entomopathogenic nematode treatments.

Biological Control of Lycariella magi(Diptera: Sciaridae), a Pest of Oyster Mushroom, Pleurotus ostreatus Using Entomopathogenic Nematodes (곤충병원성 선충을 이용한 느타리버섯해충, 긴수염버섯파리 (Lycoriella mali)의 생물적방제)

  • 김형환;추호렬;이흥수;박정규;이동운;진병래;추영무
    • Korean journal of applied entomology
    • /
    • v.40 no.1
    • /
    • pp.59-67
    • /
    • 2001
  • The potential of two entomopathogenic nematodes, Sreinernema carpocapsae Pocheon strain and Heterorhabditis bacteriophora Hamyang strain as biological control agents was evaluated against mushroom ny, Lycoriella mali in laboratory and field. Mortality of L. mali was significantly different according to nematode species, concentration, temperature, and developmental stage of fly S. carpocapsae was more effective than H. bacteriophora. Mortality of L. mali was higher at $25^{\circ}C$ than at $20^{\circ}C$. In addition, the 3rd instal and the 4th instar of L. mali were more susceptible than the 2nd instar. The lowest $LC^{50}$ value was represented by S. carpocapsae, 20.0 infective juveniles (Ijs) in the 3rd instar, 27.5 Ijs in the 4th instar at $25^{\circ}C$. S. carpocapsae infected all the developmental stages of L. mali except egg stage and the 1st instar of larva. The highest mortality was shown in adult female representing 74.0% at$20^{\circ}C$ and 80.0% at $25^{\circ}C$.L. mali female adult was influenced by S. carpocapsae in oviposition. The number of eggs by L. mali female infected by nematodes was much lower than uninfected females. S. carpocapsae was dispersed by infected L. mali adult with higher numbers by females than males. When S. carpocapsae was applied at the rate of $2.25{\times}10^{5}\;and\;4.5{\times}10^{5}\;Ijs/1.5\;\textrm{m}^2$ in the mushroom house, mortalities were 42.2% and 81.6%, respectively. The infective juveniles of nematodes survived for 14 days in the mushroom medium. However, nematodes did not affect mushroom growth.

  • PDF

Effects of Temperature and Nematode Concentration on Pathogenicity and Reproduction of Entomopathogenic Nematode, Steinernema carpocapsae Pocheon Strain (Nematoda: Steinernematidae) (온도 및 농도가 곤충병원성 선충, Steinernema carpocapsae 포천 계통 (Nematoda: Steinernematidae)의 병원성과 증식에 미치는 영향)

  • 추호렬;이동운;윤희숙;이상명;항다오싸이
    • Korean journal of applied entomology
    • /
    • v.41 no.4
    • /
    • pp.269-277
    • /
    • 2002
  • Ecological studies on entomopathogenic nematodes are required to increase control efficacy against target insect pests and to obtain basic information for mass production. Thus, effect of temperature and nematode concentration on infectivity and reproduction of Steinernema carpocapsae Pocheon and that of exposure time and soil depth on infectivity were examined using Galleria mellonella larvae. Infectivity and reproduction were examined at five temperatures, 13, 18, 24, 30 and 35$^{\circ}C$ with seven concentrations, 0, 5, 10, 20, 40, 80 and 160 infective juveniles (IJs)/larva. Temperature and nematode concentration influenced infectivity and reproduction of S. carpocapsae Pocheon. Although G. mellonella larvae were killed by S. carpocapsae Pocheon at all given temperatures and nematode concentrations, mortality was higher at 24$^{\circ}C$ than other temperatures. Lethal time of G. mellonella by S. carpocapsae Pocheon was shorter with increasing temperature and nematode concentrations. S. carpocapsae Pocheon was not established in G. mellonella at 13 and $35^{\circ}C$. Time for the first emergence from G. mellonella cadaver was longer $18^{\circ}C$ (about 20 days) than 24 and $30^{\circ}C$ (about 5 days). The highest number of progenies was obtained at $24^{\circ}C$ with 80IJs/1arva, i.e., $18.8$\times$10^4$IJs were produced from a larva. In the exposure time assay, G. mellonella death was recorded in 10 minutes when 300 IJs were inoculated per larva. When S. carpocapsae Pocheon was inoculated at the rate of $10^{9}$ IJs/ha to G. mellonella at the depth of 0, 2, 5 and 10 cm of sand columns, 100% mortality and similar sex ratio were observed but number of established IJs in cadaver was decreased with deepening the soil depth. The results indicated that optimum temperature for infectivity and reproduction of S. carpocapsae Pocheon was $24^{\circ}C$ In addition, S. carpocapsae Pocheon was effective to target insects within 5 cm from the soil surface.

Practical Utilization of Entomopathogenic Nematodes, Steinernema carpocapsae Pocheon Strain and Heterorhabditis bacteriophora Hamyang Strain for Control of Chestnut Insect Pests (밤 종실해충 방제를 위한 곤충병원성 선충, Steinernema carpocapsae 포천 계통과 Heterorhabditis bacteriophora함양 계통의 실용적 활용)

  • 추호렬;김형환;이동운;이상명;박선호;추영무;김종갑
    • Korean journal of applied entomology
    • /
    • v.40 no.1
    • /
    • pp.69-76
    • /
    • 2001
  • The entomopathogenic nematodes, Steinernema carpocapsae Pocheon strain (ScP) and Heterorhabditis bacteriophora Hamyang strain (HbH) were evaluated against chestnut insect pests, The farmers'handling methods of chestnuts were taken into consideration to develop practical biological control with entomopathogenic nematodes . The major insect pests found with chestnuts were Curculio sikkimensis, Seichocrocis punctiferalis, and Cydia kurokoi. Although individual chestnut contained one species of insect was 58% representing 18% by C. sikkimensis, 27.7% by D. punctiferalis and 12.3% by C. kurokoi. The percentage of co-infection of C. sikkimensis with D. punctiferalis was 3.3%, C. sikkimensis with C. kurokoi 5.0%, D. punctiferalis with C. kurokoi 7.7%, and C. sikkimensis with D. punctiferalis and C. kurokoi 5.0%. The entomopathogenic nematodes, ScP and HbH were effective against all the species of chestnut insect pests. The $LC_{50}$ of ScP was 14.6 for C. sikkimensis, 4.6 for D. punctiferalis, and 5.6 for C. kurokoi and that of HbH was 49.2 for C. sikkimensis, 5.8 for D. punctiferalis, and 13.9 for C. kurokoi, respectively. When ScP was applied into pot including harvested chestnuts at the rate of 4,813 infective juveniles (Ijs)/pot $(=1\times10^9/ha)$, mortality of C. sikkimensis, D. punctiferalis, and C. kurokoi was 85.3%, 96.9%, and 68.1%, respectively. The mortality of C. sikkimensis, D. punctiferalis, and C. kurokoi was 60.73%, 96.5%, and 66.8%, respectively when HbH was applied at the same rate. Combination of two nematode species produced similar effects and insects were more infected by ScP than HbH. When chestnuts were soaked in the suspension of ScP at the rate of 300, 3,000, and 30,000 Ijs for 10 minutes or 30 minutes, mortalities of all chestnut insects were high irrespective of soaking time, concentration , and nematode species.

  • PDF

Effect of Some Herbal Extracts on Entomopathogenic Nematodes, Silkworm and Ground Beetles (몇 가지 한약재 추출물이 곤충병원성선충과 누에 및 먼지벌레에 미치는 영향)

  • Lee, Dong-Woon;Choi, Hyeon-Cheol;Kim, Tae-Su;Park, Jong-Kyun;Park, Jung-Chan;Yu, Hwang-Bin;Lee, Sang-Myoung;Choo, Ho-Yul
    • Korean journal of applied entomology
    • /
    • v.48 no.3
    • /
    • pp.335-345
    • /
    • 2009
  • Effect of four nematicidal herbal extracts (Daphne genkwa, Eugenia caryophyllata, Quisqualis indica and Zingiber officinale) and 3 acricidal herbal extracts (Pharbitis nil, Xanthium strumarium, and Desmodium caudatum) on entomopathobenic nematodes [Steinernema carpocapsae Pocheon strain (ScP) and Heterorhabditis sp. Gyeongsan strain (HG)], silkworm (Bombyx mori), and ground beetles (Synuchus sp.) were investigated in the laboratory and field. D. genkwa was highly toxic to SCP and HG (100% mortality) at the concentration of 5,000 ppm in X-plate. All the infective juveniles of HG were dead after 3 days by E. caryophyllata and Q. indica. The mortality of ScP and HG was below 10% by D. genkwa, D. caudatum, E. caryophyllata, Q. indica and Z. officinale at the concentration of 1,000 ppm two days after treatment while mortality of HG was 62.8% by D. genkwa at the concentration of 1,000 ppm in X-plate. However, 1,000 ppm had not effect on nematode survival and pathogenicity of ScP in sand column. On the contrary, E. caryophyllata had effect on pathogenicity of HG. Mean number of dead Galleria mellonella larva of HG was 0.5 in E. caryophyllata treatment. Q. indica did not effect silkworm reared on mulberry leaves at the treatment of 1,000 ppm in 10 days after treatment. However, there were 20.0 and 100% mortalities in the treatment of D. genkwa 3 and 10 days after treatment, respectively. The weight of silkworm was low in D. genkwa and did not pupate. The weight of pupa and cocoon were not different in E. caryophyllata, P. nil, Q. indica, X. strumarium and Z. officinale. D. genkwa, E. caryophyllata, P. nil, Q. indica and Z. officinale had no effect on ground beetles, Synuchus sp. in forest soil.