• 제목/요약/키워드: Steering performance

검색결과 602건 처리시간 0.028초

자동조타기의 제어성능개선에 관한 연구 (A study on the Improvement of control performance of Auto Steering System)

  • 강창남
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.114-117
    • /
    • 2005
  • Auto Steering System is the device for course keeping or course altering to ship's steering system. The Purpose of automatic steering system is to keep the ship's course stable with the minimum course and rudder angle. Recently, modern control theories are being used widely in analyzing and designing the ship system. Though P.D type auto pilots are widely used in ships, the stability and the adjusting methods are not clarified. In this paper the authors proposed auto steering system with Fuzzy Logic Controller. In the fuzzy control the things that the actual operators of a steering wheel has acquired through their experience can be logically described by the Lingustic Control Rule. The characteristic of the control system were investigated through the computer simulation results. it was found that the fuzzy logic control was more efficient than the conventional system.

  • PDF

Improvement of Maneuvering Feeling of Human-Mechanical Cooperative System and Its Application to Electric Power Steering System

  • Mukai, Yasuhiko;Ukai, Hiroyuki;Iwasaki, Makoto;Matsui, Nobuyuki;Hayashi, Jiro;Makino, Nobuhiko;Ishikawa, Hiroshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.728-733
    • /
    • 2003
  • In human-mechanical cooperative systems, a significant issue is to improve the control performance and the maneuvering feeling of human operation. However, since it is not easy to evaluate the feeling of operators numerically, control engineers design controllers only through experience. Thus, in this paper, a new evaluation method for control performance of human-mechanical cooperative system is proposed based on the reserge waveform. Various distortions of waveform represent deteriorations of control performance and maneuvering feeling. In some cases, since there is a tradeoff between the control performance and the maneuvering feeling, it is difficult to compensate for both of them by usual feedback controllers. To overcome this situation, the two degrees of freedom control system is applied to human-mechanical cooperative system. Some numerical simulation results for an electric power steering system are shown to confirm the effectiveness of proposed control design method.

  • PDF

저감도최적조타계의 설계에 관한 연구 (Low Sensitive Optimal Steering System of Ships at Sea)

  • 이철영
    • 한국항해학회지
    • /
    • 제4권1호
    • /
    • pp.19-30
    • /
    • 1980
  • The usual procedure for the optimal design of ship's steering system is to minimize a chosen quadratic performance index, which isdetermined from the view point of economic run. However, the optimal control synthesized in such a straightforward fashion is unsatisfactory because ship's parameters differ from their nominal values due to uncertainties and errors in measurement and/or simplifications in mathematical modelling, and/or the variation of the ship's loading condition. In an attempt to resolve this difficulty, this paper presents a method for designing a low sensitive optimal steering system in a way as to minimize not only given performance index but also the sensitivity of the performance index and trajectory sensitivity. It is also shown that the optimal control so obtained will result in a system whose performance index and transient response are low sensitive to small varation in ship's time constant.

  • PDF

로드휠의 슬립을 고려한 군용 궤도차량의 조향특성에 관한 연구 (The Steering Characteristics of Military Tracked Vehicles with Considering Slippage of Roadwheel)

  • 임원식;윤재섭;강상욱
    • 한국자동차공학회논문집
    • /
    • 제17권2호
    • /
    • pp.57-66
    • /
    • 2009
  • In this paper, the steering characteristics of tracked vehicles are studied for the improvement of steering performance. The important design factor of military vehicles is high mobility. It is influenced by weight of a vehicle, engine capacity, power-train, and steering system. The military vehicle, which is equipped with caterpillar, has unique steering characteristics and is quite different from that of a wheeled vehicle. The steering of tracked vehicles is operated in the power pack due to different speeds of both sprockets. Under cornering conditions, power split and power regeneration are happened in the power pack. In case of power regeneration, power is transferred outside track after adding engine power and power inputted inside track from the ground. However, excessive power regeneration is transferred in the power pack. It damages mechanical elements. Therefore, it is necessary to analyze the steering system and check mentioned problem above. In this study, the detailed dynamic model of steering system is presented, which includes slippage between track and roadwheel, inertia force, and inertia moment. Finally, our model is compared with the Kitano model and we verified the validity of the model.

자동 차선 유지 시스템의 전기식 파워 조향 시스템을 위한 슬라이딩 모드 제어기 (Sliding Mode Control for an Electric Power Steering System in an Autonomous Lane Keeping System)

  • 유준영;김원희;손영섭;정정주
    • 제어로봇시스템학회논문지
    • /
    • 제21권2호
    • /
    • pp.95-101
    • /
    • 2015
  • In this paper, we develop a sliding mode control for steering wheel angle control based on torque overlay in order to resolve the problem of previous methods for Electric Power Steering (EPS) systems in the Lane Keeping System (LKS) of autonomous vehicles. For the controller design, we propose a 2nd order model of the electric power steering system in an autonomous LKS. The desired state model is designed to prevent a rapid change of the steering wheel angle. The sliding mode steering wheel angle controller is developed for the robustness of the disturbance. Since the proposed method is designed based on torque overlay, torque integration with basic functions of the EPS system for the steering wheel angle control is available for the driver's convenience. The performance of the proposed method was validated via experiments.

풀리 및 전자클러치를 이용한 유무인 전기자동차용 수동 및 자동조향장치 (Manual and Automatic Steering System Using Pulley and Electrical Clutch for Manned and Unmanned Electric Vehicle)

  • 이용준;유영재
    • 한국지능시스템학회논문지
    • /
    • 제22권5호
    • /
    • pp.597-602
    • /
    • 2012
  • 본 논문에서는 유인과 무인주행이 가능한 전기자동차용 수동 및 자동 조향장치를 제안한다. 기존의 엔진방식의 자동차에 사용되는 자동 조향시스템인 EPS, MDPS는 주행 중에 과부하시엔 핸들 잠김 현상이 발생하는 문제점이 있어 유무인 전기자동차에 적용하는 것은 한계가 있다. 제안하는 수동 및 자동 조향장치는 전자클러치와 풀리를 이용함으로써 수동과 자동변환이 가능하도록 조향 메커니즘을 설계하였다. 제안한 조향장치의 성능을 실험하기 위해 실험용 전기자동차를 제작하고 조향성능을 실험하였다. 실험을 통해 제안하는 수동 및 자동 조향장치는 유무인 전기자동차에 유용함을 확인하였다.

도시형자기부상차량의 반능동 조향장치에 대한 연구 (Study for Semi-Steering system for Urban Maglev)

  • 이남진;강광호;이원상
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 춘계학술대회 논문집
    • /
    • pp.1080-1084
    • /
    • 2011
  • Urban maglev should have such characteristics as not only environmentally friendliness and excellent driving capability but also curve negotiation performance because its routes have many sharp curves. Due to normal mechanism of urban maglev its relative displacements of secondary spring are bigger than conventional railway vehicle and the centering force of levitation magnet is smaller than wheel-on-rail system. These features of maglev affect the curving negotiation and so the additional steering device is to be required on Urban maglev to improve the running performance at sharp curve of less than about R50m. Some developed urban maglev had the passive steering device which consists of mechanical linkage or hydraulic cylinder and closed-route piping. But it has drawback as complexity of layout of understructure of vehicle and functional limitation of passive mechanism regarding transient curve. These demerits could be solved by using active steering system. But it has a weak point that an active device should have actuators and additional inverter or hydraulic power source. In this paper, the semi-active steering system for urban maglev is to be introduced.

  • PDF

승용차 4륜 조향(4WS) 장치용 비례 압력 제어 밸브의 특성에 관한 연구 (Characteristics of the Proportional Pressure Control Valve for 4 Wheel Steering System on the Passenger Car)

  • 오인호;장지성;이일영
    • 한국자동차공학회논문집
    • /
    • 제4권4호
    • /
    • pp.87-96
    • /
    • 1996
  • The proportional pressure control valve(PCV) is an essential component in the open loop controlled rear wheel steering gear of the four wheel steering(4WS) system on the passenger car. The valve should have versatile functions and higher performance. But, it is hard to find the proportional pressure control valve suitable for the 4WS system. In this paper, the determination of the valve parameters was studied by the stability discrimination and the characteristic analysis for the purpose of the development of a new PCV for the 4WS. The mathematical model of the valve was derived from the valve-cylinder system and the programme for numerical computation was developed. The transfer function of the system was obtained from the mathematical model. The characteristics of the valve were inspected through the experiment and compared to those obtained by numerical method. And then the stability discrimination of the system was done by root locus and the analysis of characteristics was done by the developed programme. From the experiment and the analysis of characteristics was done by the developed programme. From the experiment and the inspection, the appropriation of mathematical model and the usefulness of the programme were confirmed. And the parameters which might affect the performance of the valve can be determined by considering the stability discrimination, the characteristics analysis and required functions.

  • PDF

후륜 조향 동력학 모델 및 제어 로직 개발 (Development of the Dynamic Model and Control Logic for the Rear Wheel Steering in 4WS Vehicle)

  • 장진희;김상현;한창수
    • 한국자동차공학회논문집
    • /
    • 제4권6호
    • /
    • pp.39-51
    • /
    • 1996
  • In the turning maneuver of the vehicle, its motion is mainly dependent on the genuine steering characteristics in view of the directional stability for stable turning ability. The under steer vehicle has an ability to maintain its own directonal performance for unknown external disturbances to some extent. From a few years ago, in order to acquire the more enhanced handling performance, some types of four wheel steering vehicle were considered and constructed. And, various rear wheel control logics for external disturbances has not been suggested. For this reason, in this posed rear wheel control logic is based on the yaw rate feed back type and is slightly modified by an yaw rate tuning factor for more stable turning performance. And an external disturbance is defined as a motivation of the additional yaw rate in the center of gravity by an uncertain input. In this study, an external disturbance is applied to the vehicle as a form of the additional yawing moment. Finally, the proposed rear wheel control logic is tested on the multi-body analysis software(ADAMS). J-turn and double lane change test are performed for the validation of the control logic.

  • PDF

농용트랙터의 자동조향을 위한 퍼지제어와 적응제어의 비교 (Comparison between Fuzzy and Adaptive Controls for Automatic Steering of Agricultural Tractors)

  • 노광모
    • Journal of Biosystems Engineering
    • /
    • 제21권3호
    • /
    • pp.283-292
    • /
    • 1996
  • Automatic guidance of farm tractors would improve productivity by reducing operator fatigue and increasing machine performance. To control tractors within $\pm$5cm of the desired path, fuzzy and adaptive steering controllers were developed to evaluate their characteristics and performance. Two input variables were position and yaw errors, and a steering command was fed to tractor model as controller output. Trapezoidal membership functions were used in the fuzzy controller, and a minimum-variance adaptive controller was implemented into the 2-DOF discrete-time input-output model. For unit-step and composite paths, a dynamic tractor simulator was used to test the controllers developed. The results showed that both controllers could control the tractor within $\pm$5cm error from the defined path and the position error of tractor by fuzzy controller was the bigger of the two. Through simulations, the output of self-tuning adaptive controller was relatively smooth, but the fuzzy controller was very sensitive by the change of gain and the shape of membership functions. Contrarily, modeling procedure of the fuzzy controller was simple, but the adaptive controller had very complex procedure of design and showed that control performance was affected greatly by the order of its model.

  • PDF