• 제목/요약/키워드: Steering control

검색결과 823건 처리시간 0.034초

A Study on the Dynamic Analysis and Control Algorithm for a Motor Driven Power Steering System

  • Yun, Seokchan;Han, Changsoo;Wuh, Durkhyun
    • Journal of Mechanical Science and Technology
    • /
    • 제16권2호
    • /
    • pp.155-164
    • /
    • 2002
  • The power steering system for vehicles is becoming essential for supporting the steering efforts of the drivers, especially for the parking lot maneuver Although hydraulic power steering has been widely used for years, its efficiency is not high enough. The problems associated with a hydraulic howe. steering system can be solved by a motor driven power steering (MDPS) system. In this study, a dynamic model and a control algorithm for the ball screw type of MDPS system have been derived and analyzed by using the method of discrete modeling technology. To improve steering feel and power steering characteristics, two derivative gains are added to the conventional power boosting control algorithm. Through simulations, the effects of the control gain on the steering angle gain were verified in the frequency domain. The steering returnability and steering torque phase lag in on-center handling test were also evaluated in the time domain.

Steering Wheel Torque Control of Electric Power Steering by PD-Control

  • Pang, Du-Yeol;Jang, Bong-Choon;Lee, Seong-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1366-1370
    • /
    • 2005
  • As the development of microprocessor technology, electric power steering (EPS) system which uses an electric motor came to use a few years ago. It can solve the problems associated with hydraulic power steering. The motor only operates when steering assistance is needed, so it can save fuel and can reduce weight and cost by eliminating hydraulic pump and piping. As one of performance criteria of EPS systems, the transmissibility from road wheel load to steering wheel torque is considered in the paper. The transmissibility can be studied by fixing the steering wheel and calculating the torque needed to hold the steering wheel from road wheel load. A proportion-plus-derivative control is needed for EPS systems to generate desired static torque boost and avoid transmissibility of fluctuation. A pure proportion control can't satisfy both requirements.

  • PDF

Ball screw형 전동식 동력 조향 장치의 제어에 관한 연구 (A Study on the Control Algorithm for a Ball Screw Type of Motor Driven Power Steering System)

  • 윤석찬;왕영용;한창수
    • 한국자동차공학회논문집
    • /
    • 제8권1호
    • /
    • pp.124-134
    • /
    • 2000
  • The power wteering system for automobiles is becoming core popular for supporting steering efforts of the drivers, especially for a parking lot maneuver. Though hydraulic power steering has been widely used for a long time, the efficiency of that is not high enough. The motor driven power steering system can solve the problems associated with the hydraulic power steering system. In this study, dynamic model and control algorithm of the ball screw type of MDPS systenem have been derived and analysed by using the method of discrete modeling technology. To improve steering feel and power steering characteristics, the additional scheme is proposed to the conventional power boosting control algorithm. Through simulations, control gain effects to the steering angle gain in the frequency domain were verified. The steering returnability and steering torque phase lag in on-center handing test were performed also.

  • PDF

EVALUATION OF FOUR-WHEEL-STEERING SYSTEM FROM THE VIEWPOINT OF LANE-KEEPING CONTROL

  • Raksincharoensak, P.;Mouri, H.I;Nagai, M.I
    • International Journal of Automotive Technology
    • /
    • 제5권2호
    • /
    • pp.69-76
    • /
    • 2004
  • This paper evaluates the effectiveness of four-wheel-steering system from the viewpoint of lane-keeping control theory. In this paper, the lane-keeping control system is designed on the basis of the four-wheel-steering automobiles whose desired steering response is realized with the application of model matching control. Two types of desired steering responses are presented in this paper. One is zero-sideslip response, the other one is steering response which realizes zero-phase-delay of lateral acceleration. Using simplified linear two degree-of-freedom bicycle model, simulation study and theoretical analysis are conducted to evaluate the lane-keeping control performance of active four-wheel-steering automobiles which have different desired steering responses. Finally, the evaluation is conducted on straight and curved roadway tracking maneuvers.

Development of Steering Control System for Autonomous Vehicle Using Geometry-Based Path Tracking Algorithm

  • Park, Myungwook;Lee, Sangwoo;Han, Wooyong
    • ETRI Journal
    • /
    • 제37권3호
    • /
    • pp.617-625
    • /
    • 2015
  • In this paper, a steering control system for the path tracking of autonomous vehicles is described. The steering control system consists of a path tracker and primitive driver. The path tracker generates the desired steering angle by using the look-ahead distance, vehicle heading, and a lateral offset. A method for applying an autonomous vehicle to path tracking is an advanced pure pursuit method that can reduce cutting corners, which is a weakness of the pure pursuit method. The steering controller controls the steering actuator to follow the desired steering angle. A servo motor is installed to control the steering handle, and it can transmit the steering force using a belt and pulley. We designed a steering controller that is applied to a proportional integral differential controller. However, because of a dead band, the path tracking performance and stability of autonomous vehicles are reduced. To overcome the dead band, a dead band compensator was developed. As a result of the compensator, the path tracking performance and stability are improved.

외란 관측기를 이용한 모델 예견 기반의 전지형 크레인 자동조향 제어알고리즘 개발 (Development of an Automatic Steering-Control Algorithm based on the MPC with a Disturbance Observer for All-Terrain Cranes)

  • 오광석;서자호
    • 드라이브 ㆍ 컨트롤
    • /
    • 제14권2호
    • /
    • pp.9-15
    • /
    • 2017
  • The steering systems of all-terrain cranes have been developed with various control strategies for the stability and drivability. To optimally control the input steering angle, an accurate mathematical model that represents the actual crane dynamics is required. The derivation of an accurate mathematical model to optimally control the steering angle, however, is difficult since the steering-control strategy generally varies with the magnitude of the crane's longitudinal velocity, and the postures of the crane's working parts vary while it is being driven. To address this problem, this paper proposes an automatic steering-control algorithm that is based on the MPC (model predictive control) with a disturbance observer for all-terrain cranes. The designed disturbance observer of this study was used to estimate the error between the base steering model and the actual crane. A model predictive controller was used for the computation of the optimal steering angle, along with the use of the base steering model with an estimated uncertainty. Performance evaluations of the designed control algorithms were conducted based on a curved-path scenario in the Matlab/Simulink environment. The performance-evaluation results show a sound reference-path-tracking performance despite the large uncertainties.

자율 주행 트랙터 시스템의 성능 향상을 위한 CAN 기반의 조향제어시스템 개발 (Development of Steering Control System based on CAN for Autonomous Tractor System)

  • 서동현;서일환;정선옥;김기대
    • 농업과학연구
    • /
    • 제37권1호
    • /
    • pp.123-130
    • /
    • 2010
  • A steering control system based on CAN(Controller Area Network) for autonomous tractor was developed to reduce duty of a central processing computer and to improve performance of steering control in terms of reduced control interval and error. The steering control system consisted of a SCU (Steering Control Unit), an EHPS system, and a potentiometer. The SCU consisted of an MCU (Micro Controller unit), an A/D converter, and a DC-DC converter, and a PID controller was used to control steering angle. The steering control system was communicated with the computer by CAN-bus. Each actuator and implement was connected to a multi-function board interfacing with the computer through a USB cable. Without CAN, control interval of the autonomous tractor was 1.5 seconds. When the CAN-based steering control system was combined with the autonomous tractor, however, control interval of the integrated system was reduced to those less than 0.05 seconds. When the autonomous tractor was operated with 1.5-s and 0.05-s control cycles at a 0.63-m/s travelling speed, the trajectories were close to straight lines for both of the control cycles. For a 1.34-m/s traveling speed, tractor trajectory was close to sine wave with a 1.5-s control cycle, but was straight line with a 0.05-s control cycle.

DEVELOPMENT OF AN ACTIVE FRONT STEERING SYSTEM

  • Kim, S.J.;Kwak, B.H.;Chung, S.J.;Kim, J.G.
    • International Journal of Automotive Technology
    • /
    • 제7권3호
    • /
    • pp.315-320
    • /
    • 2006
  • We have developed an active front steering system(AFS) with a planetary gear train, which can vary the steering gear ratio according to the vehicle speed and improve vehicle stability by superimposing steering angle. We conducted vehicle tests showing that co-operated control of AFS with ESP can improve vehicle stability by direct control of tire slip angle and that steering reaction torque during AFS intervention can be compensated by torque compensation using electric power steering.

유량 및 부하가 변하는 상태에서의 양로드 유압실린더의 위치제어시스템 (Position Control System of a Double-end Rod Hydraulic Cylinder under Variable Flow Rate and Load Conditions)

  • 김대철;김동화;이재규;신범수
    • Journal of Biosystems Engineering
    • /
    • 제34권5호
    • /
    • pp.331-341
    • /
    • 2009
  • A double-end rod hydraulic cylinder is widely used with a steering valve for the steering control system in large tractors. For the development of automatic steering controller, the feasibility of using a proportional control valve replacing the conventional manual steering valve to control the position of hydraulic steering cylinder was investigated in terms of the max. overshoot, the steady-state error and the rise time. A simulation model for the electrohydraulic steering system with load using AMESim package was developed to be valid so that the proper control algorithm could be chosen through the computer simulation. It could be concluded that the P-control algorithm was sufficient to control the electrohydraulic steering system, where the control frequency should be no greater than 20 Hz at the P-gain of 5. In particular, the performance of the developed steering controller was satisfactory even at the conditions of varying flow rates and loads.

승용차용 전자제어식 조향장치의 개발 (Development of an electronically-controlled power steering for passenger cars)

  • 홍예선
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.698-703
    • /
    • 1990
  • This paper describes an Electronically-controlled Power Steering system which is developed by the modification of a conventional power steering based on so called rotary valve technology. The steering effort is influenced by the electrohydraulic flow rate control of the pressurized oil to rotary valve. The vehicle speed and the steering angular velocity are used to calculate and output a signal to proportional flow rate control valve by the Electronic Control Unit. The improvement of the steering feel was satisfactory compared with that of the original conventional power steering.

  • PDF