• Title/Summary/Keyword: Steering Shaft

Search Result 38, Processing Time 0.032 seconds

Analysis of Bending and Rotation Phenomenon of Torsion Bar During Press-fitting Process for EPS Angle Sensors (EPS 각도센서용 토션 바의 압입공정의 휨과 회전현상 분석)

  • H. Lee;S.H. Lee;T.H. Jeon;I.-K. Chung
    • Transactions of Materials Processing
    • /
    • v.32 no.6
    • /
    • pp.376-383
    • /
    • 2023
  • The torsion bar, which is a steering torque sensor, is mounted between the steering pinion and the input shaft in the IPA(input pinion assembly). Accurate torque measurement is important to improve the sense of operation, and the straightness of the torsion bar can affect torque measurement. In this study, the amount of bending was measured and the exact shape was analyzed regarding the bending phenomenon in the press-fitting process for torsion bars. The effect of alignment error was analyzed through finite element forming analysis. Process data analysis was conducted for the double-end press fit model. If there is an alignment error of about 10% of the serration tooth height, the indentation load is reduced by about 10%. If there is an alignment error, the torsion bar is rotated.

Optimal Die Profile Design in Tube Drawing Process for Prevention of Material Fracture (파단방지를 위한 튜브인발공정 최적 금형형상 설계에 관한 연구)

  • Lee, Sang-Kon;Kim, Sang-Woo;Lee, Young-Seon;Lee, Jung-Hwan;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.11 s.188
    • /
    • pp.78-84
    • /
    • 2006
  • The objective of this study is to design the optimal die profile that can prevent material fracture in the tube drawing process for automobile steering input shaft. First, the CDV(Critical Damage Value) of material is obtained by the compression test and FE-analysis. The occurrence of fracture is estimated by the FE-analysis considering the CDV. In order to achieve the objective of this study, optimization technique and FE-analysis are applied. FPS(Flexible Polyhedron Search) method, which is one of the non-gradient optimization techniques often used in engineering, is used to search optimal die profile. The drawing die profile is represented by Bezier-curve to generate all the possible die profile. Using FPS method and FE-analysis the optimal drawing die profile is determined. To verify tile effectiveness of the redesigned optimal die, the tube drawing experiment is performed. In the experimental result, it is possible to produce sound product without material fracture using the redesigned optimal die.

A Study on the Vibration Analysis of an Automobile Steering System (승용차 스티어링 칼럼 시스템의 진동해석에 관한 연구)

  • 김찬묵;김도연
    • Journal of KSNVE
    • /
    • v.8 no.3
    • /
    • pp.494-503
    • /
    • 1998
  • In this paper, in order to analyze dynamic characteristics of an automobile steering system consisting of many components, natural frequencies and transfer functions of each component and the total system are found on a FFT analyzer by experiments. Then, the data are transmitted to a commercial package program, CADA-PC. By analyzing the data, the mode shape of each natural frequency and damping values are obtained. Also, the function of a rubber coupling in column and telescoping effects on system are considered. C.A.E commercial programs are used to compare with the results of experiments. For the finite element modeling, I-DEAS is used. Data processing and post processing are operated on NASTRAN and XL, respectively. The ball-bearing and the linkage of shaft with column are modeled by spring element. Stiffness is modified from the results of experiments. The results of those show close agreement. In the mode shape of total system, wheel mode is dominant at lower frequency, while the column mode is main mode at higher. The role of rubber coupling in vibration isolation is clear on mode shape. Telescoping function makes natural frequency of column changed.

  • PDF

Development of Outboard Type Contactless Rudder Sensor and Automatic Steering System (선외기 선박용 비접촉 러더센서 및 자동조향장치 개발)

  • Kim, Ho-Young;Bang, Junho;Kim, Tae-Hyung;Ryu, In-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.8
    • /
    • pp.1285-1290
    • /
    • 2017
  • In this paper, we developed a core module of the steering system to control and operate the outboard ship with the automatic steering system, and implemented it as a complete integrated system. In particular, this paper presents the problem of the rudder sensor used in the existing system and implements the contactless rudder sensor as an improvement. In the case of existing rudder sensors, there is a problem that safety operation and economic loss of the ship operation is caused by malfunction due to immersion during use in outboard vessels. However, the proposed rudder sensor is separated from the rotary shaft to constitute a contactless type, and a circular magnet is fixed so that the rotating value can be detected and used by the Hall sensor to completely solve the flooding problem. As a result of the characteristic test, the voltage value from 1.8V to 3.2V was obtained between $-35^{\circ}$ and $+35^{\circ}$ degrees and satisfied the reference value. The proposed rudder sensor was mounted on the outboard ship, and all the performance of controller system were checked. According to the system proposed in this paper, it satisfies the Korean Standard Specification, which defines the speed of convergence in 30 seconds by switching from left to right in 7 seconds. We also confirmed that automatic steering was performed by comparing the compass sensor with the destination in the integrated controller at the start-up.

Tolerance Analysis of Spline Shaft Assembly (스플라인 샤프트 공차해석)

  • Lee, Jang-Yong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.12
    • /
    • pp.75-83
    • /
    • 2010
  • Every mechanical part for mass production has dimensions with tolerances in engineering drawing. Tolerance is given to guarantee assemble parts together satisfying functional requirements and dimensional constraints. Tolerance is essential factor for standardization of parts or assembly and has huge influence on manufacturing cost. It will be desirable to have tolerances as broad as possible for minimizing manufacturing cost. This paper describes tolerance analysis of u-joint assembly that is a part of automobile steering system. Within the range of tolerances of parts, accumulated effect is estimated by arithmetic calculation, probability theory and Monte carlo simulation. Each result is compared to investigate the method for increasing productivity.

The Development of Walking Tractors for Asian Agriculture

  • Phongsupasamit, Surin;Sakai, Jun
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1102-1109
    • /
    • 1993
  • This paper describes the research and development of Walking Tractors and Tillage Implements for Phase I (1991-1992) . The project consists of : (1) the study and need for the development of the walking tractors for Thailand and other Southeast Asian countries ; (2) the comparison in the use of the walking tractors and their transmission systems that are made in Thailand and aborad : and (3) the design of future walking tractors for Asian farmers in developing countries. The design of the walking tractors is concentrated to provide the ease to farmers, especially the elderly and female which will play an important role in the future agriculture of Thailand due to the lack of manpower. In addition , the design of the walking tractors is also aiming for small-scale farmers, the majority that have limited land capital. The walking tractors consist of several components but the most important one is the " Transmission System" . Thus, the research is concentrated in the devel pment an design of the a new transmission system. The new machine , currently developed, is named after the Chulalongkron University as " Chular Walking Tractor " , model SPJS -60. The tractor uses a 6-7 horsepower diesel engine with three forward gears and one reverse gear. The tractor also uses the latest gearing technology so called planetary gearing system with steering clutches system that never been used in any earlier model. The advantages of the planetary gearing system are : (1) the final drive gear can be small, and can be designed to provide higher strength with less wearing resistance, (2) the system eliminates a shaft which is used in other systems, thus reduces the weight and the manufacturing cost . Furthermore, the Chular Walking Tractor has an additional power take off shaft that can be used or linked with other standard agricultural implements.

  • PDF

A study on the vibration analysis of automobile steering system and improvement of ride comfort (승용차 스티어링 칼럼 시스템의 진동해석과 승차감 개선에 관한 연구)

  • 김찬묵;임홍재;김도연;임승만;이외순;조항원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.336-342
    • /
    • 1997
  • In this paper, in order to analyze dynamic characteristics of automobile steering system consisting of many components, natural frequencies and transfer functions of each component and total system are found on FFT by experiments. Then, the data are transmitted to commercial package program, CADA-PC. By analyzing the data, the mode shape of each natural frequency and damping values are obtained. Also, the function of rubber coupling in column and telescoping effects on system are considered. C.A.E commercial program are used to compare with the results of experiments. For finite element modeling, I-DEAS is used. Data processing and post processing are operated on NASTRAN and XL, respectively. The ball-bearing and the linkage of shaft with column are modeled by spring elements. Stiffness is modified from the results of experiments. The results of those show close agreement. In the mode shape of total system, wheel mode is dominant at lower frequency while the column mode is main mode at higher . The role of rubber coupling in vibration isolation is clear on mode shape. Telescoping function makes natural frequency of column changed.

  • PDF

Development of a Prototype of Guidance System for Rice-transplanter

  • Zhang, Fang-Ming;Shin, Beom-Soo;Feng, Xi-Ming;Li, Yuan;Shou, Ru-Jiang
    • Journal of Biosystems Engineering
    • /
    • v.38 no.4
    • /
    • pp.255-263
    • /
    • 2013
  • Purpose: It is not easy to drive a rice-transplanter avoiding underlapped or overlapped transplanting in paddy fields. An automated guidance system for the riding-type rice-transplanter would be necessary to operate the rice-transplanter autonomously or to assist the beginning drivers as a driving aid. Methods: A prototype of guidance system was composed of embedded computers, RTK-GPS, and a power-steering mechanism. Two Kalman filters were adopted to overcome sparse positioning data (1 Hz) from the RTK-GPS. A global Kalman filter estimated the posture of rice-transplanter every one second, and a local Kalman filter calculated the posture from every new estimation of the global Kalman filter with an interval of 200 ms. A PID controller was applied to the row-following mode control. A control method of U-turning mode was developed as well. A stepping motor with a reduction gear set was used to rotate the shaft of steering wheel. Results: Test trials for U-turning and row-following modes were done in a paddy field after some parameters have been tuned at the ground speed range of 0.3 ~ 1.2 m/s. The minimum RMS error of offset was 3.13 cm at the ground speed of 0.3 m/s while the maximum RMS error was 13.01 cm at 1.2 m/s. The offset RMS error tended to increase as the ground speed increased. The target point distance, LT also affected the system performance and PID controller parameters should be adjusted on different ground speeds. Conclusions: A target angle-based PID controller plus stationary steering angle controller made it possible for the rice-transplanter to steer autonomously by following a reference line accurately and even on U-turning mode. However, as condition in paddy fields is very complicated, the system should control the ground speed that prevents it from deviating too much due to ditch and slope.

Minimization of Burr Formation in Drilling with Step Drill (구멍가공시 스텝드릴을 이용한 버형성 최소화를 위한 연구)

  • Ko, Sung-Lim;Kim, Jin-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.10
    • /
    • pp.132-140
    • /
    • 2000
  • In conventional drilling, burr geometry can be changed according to the variation of drill geometry like point angle, rake angle. Step drilling is proposed to minimize the burr formation in drilling operation. The burr formed in first cutting can be removed in second cutting by the edge in step. The burr formed in second cutting by the edge in step can be minimized according to the change of geometry like, step angle and depth. The mechanism in step drilling is analyzed. Some step drills are applied to drilling the input shaft which is used for vehicle steering. To measure the burr formed in drilling, laser and height gage are used.

  • PDF