• Title/Summary/Keyword: Steel-making slag

Search Result 57, Processing Time 0.021 seconds

Assessment of the Sorption Characteristics of Cadmium onto Steel-making Slag in Simulated Sea Water Using Batch Experiment (모사해수 조건에서 회분식 실험을 이용한 제강슬래그의 카드뮴 흡착 특성 평가)

  • Kim, Eun-Hyup;Rhee, Sung-Su;Lee, Gwang-Hun;Kim, Yong-Woo;Park, Jun-Boum;Oh, Myoung-Hak
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.4
    • /
    • pp.43-50
    • /
    • 2011
  • Steel-making slag was investigated as reactive material for removal of cadmium in coastal area. Batch experiments of the sorption isotherm experiment and kinetic sorption experiment were performed. Result of sorption isotherm was more adequately described by Langmuir model than Freundlich model and theoretical maximum capacity (${\beta}$) of cadmium onto steel-making slag was found. Results of kinetic sorption experiments were evaluated by pseudo second order model to investigate sorption characteristics of cadmium onto steel-making slag. Results showed that the equilibrium sorption amount of cadmium (q$q_e$) increased and the rate constant ($k_2$) and initial sorption rate (h) decreased as the initial cadmium concentration increased. The $q_e$ with simulated sea water was similar to that with deionized water and $k_2$ and h with simulated sea water was lower than those with deionized water. Results of kinetic experiments could be used to predict the result from sorption isotherm, since equilibrium sorption amounts calculated by pseudo second order model generally agreed with those measured from sorption isotherm. The reaction time for the target removal rate could be calculated by the pseudo second order model using kinetic sorption tests results.

Study on Physical and Chemical Properties of CaO-Al2O3 System Melting Compound (CaO-Al2O3계 용융화합물의 물리·화학적 특성에 관한 연구)

  • Lee, Keun-Jae;Koo, Ja-Sul;Kim, Jin-Man;Oh, Sang-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.2
    • /
    • pp.209-215
    • /
    • 2013
  • This study is aimed to identify the method to use the CaO-$Al_2O_3$ system of rapidly cooled steel making slag (RCSS) as the environment-friendly inorganic accelerating agent by analyzing its physical and chemical properties. The fraction of rapidly cooled steel making slag is distinguished from its fibrous, and the contents of CaO and $Fe_2O_3$ are inversely proportional across different fractions. In addition, as the content of CaO decreased and the content of $Fe_2O_3$ increased, the loss ignition tended to become negative (-) and the density increased. The pore distribution by mercury intrusion porosimetry is very low as compared to the slowly cooled steel-making slag, which indicates that the internal defect and the microspore rate are remarkably lowered by the rapid cooling. To analyze the major minerals the rapidly cooled steel-making slag, XRD, f-CaO quantification and SEM-EDAX analysis have been performed. The results shows that f-CaO does not exist, and the components are mainly consisted of $C_{12}A_7$ and reactive ${\beta}-C_2S$.

Investigation of the Rice Plant Transfer and the Leaching Characteristics of Copper and Lead for the Stabilization Process with a Pilot Scale Test (논토양 안정화 현장 실증 시험을 통한 납, 구리의 용출 저감 및 벼로의 식물전이 특성 규명)

  • Lee, Ha-Jung;Lee, Min-Hee
    • Economic and Environmental Geology
    • /
    • v.45 no.3
    • /
    • pp.255-264
    • /
    • 2012
  • The stabilization using limestone ($CaCO_3$) and steel making slag as the immobilization amendments for Cu and Pb contaminated farmland soils was investigated by batch tests, continuous column experiments and the pilot scale feasibility study with 4 testing grounds at the contaminated site. From the results of batch experiment, the amendment with the mixture of 3% of limestone and 2% of steel making slag reduced more than 85% of Cu and Pb compared with the soil without amendment. The acryl column (1 m in length and 15 cm in diameter) equipped with valves, tubes and a sprinkler was used for the continuous column experiments. Without the amendment, the Pb concentration of the leachate from the column maintained higher than 0.1 mg/L (groundwater tolerance limit). However, the amendment with 3% limestone and 2% steel making slag reduced more than 60% of Pb leaching concentration within 1 year and the Pb concentration of leachate maintained below 0.04 mg/L. For the testing ground without the amendment, the Pb and Cu concentrations of soil water after 60 days incubation were 0.38 mg/L and 0.69 mg/l, respectively, suggesting that the continuous leaching of Cu and Pb may occur from the site. For the testing ground amended with mixture of 3% of limestone + 2% of steel making slag, no water soluble Pb and Cu were detected after 20 days incubation. For all testing grounds, the ratio of Pb and Cu transfer to plant showed as following: root > leaves(including stem) > rice grain. The amendment with limestone and steel making slag reduced more than 75% Pb and Cu transfer to plant comparing with no amendment. The results of this study showed that the amendment with mixture of limestone and steel making slag decreases not only the leaching of heavy metals but also the plant transfer from the soil.

Study on Utilization of Converter Slag as Concrete Admixture

  • Satou, Masaki;Tsuyuki, Naomitsu;Umemura, Yasuhiro;Harada, Hiroshi
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.514-519
    • /
    • 2001
  • Converter has been slag produced 10 million tons per year in Japan. It is a steel making by product produced in the same way as the blast-furnace slag. Though blast-furnace slag is being used effectively as a concrete admixture, the converter stag has never been used effectively because of the expansion action of contained free lime and iron oxide. This is an important environmental problem in the steel industry. Beta-2CaOSiO$_2$(beta-C$_2$S) is contained 40 percent in converter slag, therefore it is very promising as a concrete admixture. We proposed an accelerated aging processes capable of stabilizing the converter slag in a short time. The converter slag is dipped into alkali aqueous solution after heating at low temperature. It was subsequently ground to a grain size of 75 ${\mu}{\textrm}{m}$ , inner 30 percent of OPC. The properties of mortar and concrete using the blended cement were determined. As a result, it has become apparent that the expansion was reduced and long term compressive strength was increased while that at early ages was not so remarkable. The hydration exotherm rate was lower than that of the OPC.

  • PDF

Elution Safety of Recycled Plastic/EAF Dust Composites by Using Leaching Test (폐플라스틱/제강 Dust 성형제의 용출안전성에 대한 연구)

  • Kang, Young-Goo;Song, Jong-Hyeok
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.4
    • /
    • pp.85-91
    • /
    • 2003
  • In this study, We have investigated leaching characteristics of heavy metals for recycled plastic composites containing EAF(Electric Arc Furnace) dust & EAF slag. EAF dust & EAF slag used that is generated in the 3 steel-making compaines in domestic. The physical and chemical properties of EAF dust & slag was examined by measuring specific surface area. porosity, oil absorption test and chemical wetting analysis etc. Results of total analysis indicated that EAF dust, slag contained significant amount of hazardous metals such as Cu, Pb, Cd and Cr. But, In the leaching test of the recycled plastic composites containing EAF dust, slag by Korean Standard Leaching Procedure, composites shows much lower leaching concentration of heavy metals. It was concluded that the recycled plastic composites containing EAF dust, slag showed good physical and chemical characteristics. This means that the EAF dust, slag can be effectively used as a functional filler.

Utilization of ladle furnace slag from a steelwork for stabilization of soil cement

  • Ayawanna, Jiratchaya;Kingnoi, Namthip;Sukchaisit, Ochakkraphat;Chaiyaput, Salisa
    • Geomechanics and Engineering
    • /
    • v.31 no.2
    • /
    • pp.149-158
    • /
    • 2022
  • Ladle furnace (LF) slag, waste from the steel-making process, was incorporated to improve the compressive strength of soil cement. LF slag was mixed to replace the cement in the soil-cement samples with wt% ratio 20:0, 15:5, and 10:10 of cement and slag, respectively. LF slag in the range of 5, 10, and 20 wt% was also separately added to the 20-wt% cement-treated soil samples. The soil-cement mixed LF slag samples were incubated in a plastic wrapping for 7, 14, and 28 days. The strength of soil cement was highly developed to be higher than the standard acceptable value (0.6 MPa) after incorporating slag into soil cement. The mixing of LF slag resulted in more hydration products for bonding soil particles, and hence improved the strength of soil cement. With the LF slag mixing either a replacement or additive materials in soil cement, the LF slag to cement ratio is considered to be less than 1, while the cement content should be more than 10 wt%. This is to promote a predominant effect of cement hydration by preventing the partially absorbed water on slag particles and keeping sufficient water content for the cement hydration in soil cement.

Experimental Study on the Characteristics of Rapid Chilled Converter Slag by Watering

  • Lee, Keun-Jae;Yoo, Seung-Yeup;Koo, Ja-Sul;Cho, Bong-Suk;Lee, Hoon-Ha
    • International Journal of Concrete Structures and Materials
    • /
    • v.5 no.2
    • /
    • pp.133-137
    • /
    • 2011
  • In this study, a physical and chemical properties analysis was conducted for PCSP to evaluate properties of its materials and, for comparison purpose, was also conducted for CSP. The result of experiment confirmed improvement of iron recovery rate due to introduction of rapid water-cooling equipment and greater density of exterior and interior structure through SEM observation and porosity measurement. Also, SEM, XRD and DSC-TGA analysis showed that content of f-CaO in PCSP was minuscule so it was decided that problems of material stability including f-CaO-caused bulging failure, which has been problematic, can be solved.

Evaluation of Fluidity and Compressive Strength of Mortar by Grading Variation of Ferro-Nickel Slag Sand (페로니켈 슬래그 잔골재의 입도 변화에 따른 모르타르의 유동성 및 압축강도 평가)

  • Kim, Do-Bin;Min, Sang-Hyun;Kim, Jeong-Hyeon;Ban, Jun-Mo;Choi, Se-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.206-207
    • /
    • 2017
  • We investigated the fluidity and compressive strength properties of mortar by Grading Variation of Ferro-Nickel Slag Sand in order to improve the utilization of ferro-nickel which is the by-product produced by making stainless steel, in the construction industry.

  • PDF