• 제목/요약/키워드: Steel-Plate

검색결과 2,916건 처리시간 0.024초

Corner Steel plate-Reinforced Core Wall System

  • Park, Hong-Gun;Kim, Hyeon-Jin;Park, Jin-Young
    • 국제초고층학회논문집
    • /
    • 제8권3호
    • /
    • pp.193-199
    • /
    • 2019
  • For better structural performance and constructability, a new composite core wall system using steel plate columns at the corners of the core section was developed. Using the proposed core wall, nonlinear section analysis and 3-dimensional structural analysis were performed for the prototype core wall section and super high-rise building, respectively. The analysis results showed that, when compared to traditional RC core wall case, the use of the corner steel plate columns provided better structural capacity, which allows less wall thickness and re-bars. Further, due to such effects, the construction cost and time can be reduced despite the use of steel plate columns.

노치를 이용한 보강재의 부착력 증가 방안에 관한 연구 (A Study to Improve Bonding Strength of Strengthening Plate with Notches)

  • 한만엽;송병표;이광명
    • 콘크리트학회지
    • /
    • 제11권1호
    • /
    • pp.129-139
    • /
    • 1999
  • 본 연구는 콘크리트 구조물의 보강공법으로 널리 쓰이고 있는 강판에 의한 부착식 보강공법의 단점인 단부에서의 강판분리 현상에 대한 보완실험으로 실시되었다. 실험결과 노치가 적용된 강판부착식 공법이 항복하중 이후 최대하중까지의 증가율이 기존의 공법보다 증가되어 구조물의 보강 성능의 개선 및 안전성의 확보 측면에서 크게 개선되었을 뿐만 아니라 균열이나 처짐의 조절측면에서도 우수한 것으로 판명되었다. 이는 강판에 대한 약간의 변형만으로도 구조물의 수명을 연장시킬 수 있다는 장점과 함께 경제적으로도 보강된 구조물에 대한 추가적인 제반 비용의 절감도 기대할 수 있을 것이다.

New form of perforated steel plate shear wall in simple frames using topology optimization

  • Bagherinejad, Mohammad Hadi;Haghollahi, Abbas
    • Structural Engineering and Mechanics
    • /
    • 제74권3호
    • /
    • pp.325-339
    • /
    • 2020
  • This study presents a practical application of topology optimization (TO) technique to seek the best form of perforated steel plate shear walls (PSPSW) in simple frames. For the numerical investigation, a finite element model is proposed based on the recent particular form of PSPSW that is called the ring-shaped steel plate shear wall. The TO is applied based on the sensitivity analysis to maximize the reaction forces as the objective function considering the fracture tendency. For this purpose, TO is conducted under a monotonic and cyclic loading considering the nonlinear behavior (material and geometry) and buckling. Also, the effect of plate thickness is studied on the TO results. The final material volume of the optimized plate is limited to the material volume of the ring-shaped plate. Finally, an optimized plate is introduced and its nonlinear behavior is investigated under a cyclic and monotonic loading. For a more comprehensive view, the results are compared to the ring-shaped and four usual forms of SPSWs. The material volume of the plate for all the models is the same. The results indicate the strength, load-carrying, and energy dissipation in the optimized plate are increased while the fracture tendency is reduced without changing the material volume.

Shear response of lean duplex stainless steel plate girders

  • Armoosh, Salam R.;Khalim, A.R.;Mahmood, Akram Sh.
    • Structural Engineering and Mechanics
    • /
    • 제54권6호
    • /
    • pp.1267-1281
    • /
    • 2015
  • Carbon steel plate girders have been used on a large scale in the building industry. Nowadays, Lean Duplex Stainless Steel (LDSS) plate girders are gaining popularity as they possess greater strength and are more impervious to corrosion than those that are constructed from carbon steel. Regardless of their popularity, there is very limited information with regards to their shear behavior. In this paper, the non-linear finite element analysis was employed to investigate the shear behavior of LDSS plate girders. Parameters considered were the web thickness, the flange width, and the girders aspect ratio. The analysis revealed that although the shear behavior of the LDSS girders was no different from that of carbon steel plate girders, it had obviously been affected by the non-linearity of the material. Furthermore, the selected parameters were found to pronounce effect on the shear capacity of the LDSS girders. That is, the shear capacity increased considerably with web thickness, and increased slightly with flange width. However, it was reduced as the aspect ratio increased. Comparisons between the finite element analysis failure loads and those predicted by the current European Code of Practice revealed that the latter underestimated the shear strength of the LDSS plate girders.

외부후긴장 보강공법이 판형교의 거동에 미치는 영향 (An Effect of the Behavior of Steel Plate Girder bridge with Applying External Post-Tensioning Method)

  • 민낙기;성덕룡;김은겸;이희업;박용걸
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2006년도 추계학술대회 논문집
    • /
    • pp.514-521
    • /
    • 2006
  • In strengthening structure, the external post-tensioning method which secure clearness in the structure analysis process is adopted to bridge as well as architecture structure. Therefore, the major objective of this study is to investigate the effects and application of external post-tensioning method for steel plate girder bridge. It analyzed the mechanical behaviors of steel plate girder bridge with applying external post-tensioning on the finite element analysis and laboratory test for the dynamic characteristics. As a result, the reinforcement of steel plate girder bridge the external post-tensioning method are obviously effective for the response which is non-reinforced. The analytical and experimental study are carried out to investigate the post-tension force decrease stress and deflection on steel plate girder bridge for serviceability. It is investigated that the change degree of natural frequency is very low with applying the external post-tensioning method. The servicing steel plate girder bridge with external post-tensioning is the reasonable reinforcement measures which could be secured the stability of dynamic behavior and increase a dropped durability.

  • PDF

태양열 차단 도료의 차열 메카니즘에 따른 강판재의 온도저감 및 반사스펙트럼 분석 (Analysis of Temperature Reduction and Reflection Spectrum of Steel Plate according to Differential Thermal Mechanism of Solar Heat Paint)

  • 문동환;이광수;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2017년도 추계 학술논문 발표대회
    • /
    • pp.37-38
    • /
    • 2017
  • In Infrared rays, which are 50% of sunlight, act as heat rays to heat buildings. Solar heat paint is widely used to protect buildings from sunlight. Solar heat coatings are used to block buildings form sunlight. Solar heat paints are classified as heat-reflective paints and heat-insulating paints according to the differential thermal mechanism. In this study, we study the thermal differential mechanism by analyzing the temperature change of the coated steel plate and the solar reflection spectrum on the surface. In this experiment, exposed steel plate, heat-reflective coated steel plate, heat-insulating coated steel plate, and general paint coated steel plate were used. As a result, when the infrared rays of 780nm ~ 1400nm were irradiated, the heat reflective paint had a temperature lower by 10 degrees than other paints. Analysis of the reflection spectrum of the paint shows that the heat paint is lower in heat than other paints because it has higher reflectance of light and absorbs much of the infrared rays.

  • PDF

플레이트 거더의 수평보강재 보강 위치 (Reinforcement Location of Plate Girders with Longitudinal Stiffeners)

  • 손병직;허용학
    • 한국안전학회지
    • /
    • 제24권4호
    • /
    • pp.82-89
    • /
    • 2009
  • Unlike concrete bridge, steel bridge resists external force by forming thin plate. Thus, because steel girder bridge has big slenderness ratio, buckling is a major design factor. Plate girder consists of flange and web plate. Because of economic views, web plate that resists shear forces is made by more thinner plate. Thus, web plate has much risk for buckling. The objective of this study is to analyze the buckling behaviors of plate girder and to present the proper reinforcement location of longitudinal stiffeners. Various parametric study according to the change of web height, transverse stiffeners and load condition are examined.

리브 보강 유무에 따른 강판-콘크리트 구조의 압축거동 (Compression Behavior of Steel Plate-Concrete Structures for both Stiffened and Nonstiffened structures by Rib)

  • 최병정;한홍수;한권규;이승준
    • 한국강구조학회 논문집
    • /
    • 제21권5호
    • /
    • pp.471-481
    • /
    • 2009
  • 본 연구는 SSC(Stiffened Steel Plate-Concrete) 구조와 NSC(Non-Stiffened Steel Plate-Concrete) 구조의 압축거동 특성을 비교 분석하여 SSC 구조의 구조적 성능 향상 효과를 파악하는데 그 목적이 있다. 여기서, SSC 구조는 강판에 리브(H형강)을 사용하여 선지지하고 스터드로 점지지하여 콘크리트와 일체화 시킨 구조이다. 한편 NSC 구조는 강판에 스터드로 점지지하여 콘크리트와 일체화 시킨 구조이다. 실험을 통해 다음과 같은 결과를 얻었다. SSC 구조가 NSC 구조에 비해 시험체의 강판좌굴 억제 및 급격한 콘크리트의 취성파괴를 방지하는 것으로 나타났다. 또한 SSC 구조가 NSC 구조에 비해 약 5%~28%정도 최대압축강도가 증가한 것으로 나타났다.

Impact response of a novel flat steel-concrete-corrugated steel panel

  • Lu, Jingyi;Wang, Yonghui;Zhai, Ximei;Zhou, Hongyuan
    • Steel and Composite Structures
    • /
    • 제42권2호
    • /
    • pp.277-288
    • /
    • 2022
  • A novel flat steel plate-concrete-corrugated steel plate (FS-C-CS) sandwich panel was proposed for resisting impact load. The failure mode, impact force and displacement response of the FS-C-CS panel under impact loading were studied via drop-weight impact tests. The combined global flexure and local indentation deformation mode of the FS-C-CS panel was observed, and three stages of impact process were identified. Moreover, the effects of corrugated plate height and steel plate thickness on the impact responses of the FS-C-CS panels were quantitatively analysed, and the impact resistant performance of the FS-C-CS panel was found to be generally improved on increasing corrugated plate height and thickness in terms of smaller deformation as well as larger impact force and post-peak mean force. The Finite Element (FE) model of the FS-C-CS panel under impact loading was established to predict its dynamic response and further reveal its failure mode and impact energy dissipation mechanism. The numerical results indicated that the concrete core and corrugated steel plate dissipated the majority of impact energy. In addition, employing end plates and high strength bolts as shear connectors could prevent the slip between steel plates and concrete core and assure the full composite action of the FS-C-CS panel.

유공강판 전단연결재로 보강된 강관말뚝 머리의 인발실험 (Pull-out Test of Steel Pipe Pile Reinforced with Hollow Steel Plate Shear Connectors)

  • 이경훈
    • 한국산학기술학회논문지
    • /
    • 제17권12호
    • /
    • pp.285-291
    • /
    • 2016
  • 본 연구의 목적은 유공강판 전단연결재로 보강된 강관말뚝의 인발실험을 통하여 구조성능을 평가하는 것이다. 인발실험에 앞서 재료의 특성을 파악하기 위하여 콘크리트 압축장도 실험을 수행하였으며, 실험에 사용되는 철근 및 철판의 항복하중, 인장강도 및 연신율 등의 재료적 특성을 미리 파악하였다. 유공강판 전단연결재로 보강된 강관말뚝의 인발실험은 2,000kN 용량의 UTM을 이용하여 0.01mm/sec 재하속도의 변위제어 방법으로 실험을 수행하였다. 계측을 위하여 철근 및 유공강판 중앙에 strain gauge를 부착하였으며, 가력판과 충전콘크리트 사이의 상대변위 측정을 위하여 변위계(LVDT)를 설치하였다. 유공강판 전단연결재로 보강된 실험체의 항복하중은 각각 923.8kN과 981.1kN으로 기존 설계법에 의하여 제작된 실험체의 항복하중인 641.7kN에 비하여 1.44배 ~ 1.53배 증가됨을 알 수 있었다. 또한 유공강판 전단연결재로 보강된 실험체의 극한하중은 각각 1004.4kN과 1055.5kN으로 기존 설계법에 의하여 제작된 실험체의 극한하중인 813.7kN에 비하여 1.23배 ~ 1.29배 증가됨을 알 수 있었다. 반면, 유공강판 전단연결재로 보강된 실험체의 항복변위 및 극한상태의 변위는 기존 설계법에 의하여 제작된 실험체에 비하여 각각 0.61배 및 0.42배 감소됨을 알 수 있었다. 따라서 유공강판 전단연결재로 보강된 강관말뚝은 강성은 증가하고 상대변위 및 변형률은 낮게 측정되어 기존 말뚝머리 보강방법을 대체할 수 있는 적절한 보강방법임 알 수 있었다.