• Title/Summary/Keyword: Steel-Concrete Connection

Search Result 502, Processing Time 0.034 seconds

Modelling of flange-stud-slab interactions and numerical study on bottom-flange-bolted composite-beam connections

  • Xiaoxiang Wang;Yujie Yu;Lizhong Jiang;Zhiwu Yu
    • Steel and Composite Structures
    • /
    • v.47 no.2
    • /
    • pp.203-216
    • /
    • 2023
  • The composite beam connections often encountered fracture failure in the welded bottom flange joint, and a bottom flange bolted connection has been proposed to increase the deformation ability of the bottom flange joint. The seismic performance of the bottom flange bolted composite beam connection was suffered from both the composite action of concrete slab and the asymmetric load transfer mechanisms between top and bottom beam flange joints. Thus, this paper presents a comprehensive numerical study on the working mechanism of the bottom flange bolted composite beam connections. Three available modelling methods and a new modelling method on the flange-stud-slab interactions were compared. The efficient numerical modeling method was selected and then applied to the parametric study. The influence of the composite slab, the bottom flange bolts, the shear composite ratio and the web hole shape on the seismic performance of the bottom flange bolted composite beam connections were investigated. A hogging strength calculation method was then proposed based on numerical results.

Flexural Behavior of Segmental U-Girder and Composite U-Girder Using Ultra High Performance Concrete (초고강도 섬유보강 콘크리트를 사용한 분절형 U거더 및 합성 U거더의 휨거동)

  • Lee, Seung-Jae;Makhbal, Tsas-Orgilmaa;Kim, Sung-Tae;Han, Sang-Mook
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.3
    • /
    • pp.290-297
    • /
    • 2017
  • The flexural behavior tests of UHPC segmental U-girder and composite U-girder which has 160MPa compressive strength and 15.4m length were carried out. The test variables are volume fraction of steel fibers and slab over the U-girder. Each U-girder has longitudinal re-bars in web and lower flange. PS tendons which has 2 of 15.2mm diameter in upper flange and PS tendons which has 7 of 15.2mm diameter in lower flange were arranged and prestressed at onetime in U-girder connection stage. Enough strong prestressing force which applied to U-girder due to ultra high performance concrete strength can withstand the self weight and dead load in U-girder stage. By comparison with the brittle behavior of U-girder, composite U-girder showed the stable and ductile behavior. After the construction of slab over U-girder, flexural load capacity of composite U-girder can bear the design load in final construction stage with only one time prestressing operation which already carried out in U-girder stage. This simple prestressing method due to the ultra high strength concrete have the advantage in construction step and cost. The shear key which has narrow space has the strong composite connection between ultra high strength concrete U-girder and high strength concrete slab didn't show any slip and opening right before failure load.

An Experimental Study on Structural Behavior of Segmental Joint in Prestressed Composite Girder (프리스트레스트 강합성거더의 분절 접합부 구조거동에 관한 실험적 연구)

  • Lee, Juwon;Ha, Taeyul;Yang, Inwook;Han, Jongwook
    • Journal of the Society of Disaster Information
    • /
    • v.12 no.4
    • /
    • pp.422-431
    • /
    • 2016
  • This study was evaluated in the performance of the connection according to the details of the concrete casing segment in the prestressed composite girder by fabricating and testing specimens with different segments. A total of four comparative specimens were fabricated by using the variables of general composite girders, reinforcement or non-reinforcement, and details of reinforcing bars in the segments so as to evaluate the structural behavior of steel girders. In addition, the possibility of non-cracking grade design of segmented composite girders as well as the effects of stiffness and strength according to the loop connection types after cracking were analyzed, and the appropriateness of the crack width control both the embedded steel plate and the concrete surface were evaluated.

FE validation of the equivalent diameter calculation model for grouped headed studs

  • Spremic, Milan;Pavlovic, Marko;Markovic, Zlatko;Veljkovic, Milan;Budjevac, Dragan
    • Steel and Composite Structures
    • /
    • v.26 no.3
    • /
    • pp.375-386
    • /
    • 2018
  • Existing design codes for steel-concrete composite structures give only general information about the shear connection provided by headed studs in group arrangement. Grouting of the openings in prefabricated concrete slabs, where the grouped headed studs are placed in the deck pockets is alternative to cast-in-place decks to accomplish fast execution of composite structures. This paper considers the possibility to reduce the distance between the studs within the group, bellow the Eurocode limitations. This may lead to increased competitiveness of the prefabricated construction because more studs are placed in the group if negative effectives of smaller distances between studs are limited. The main purpose of this work is to investigate these limits and propose an analytical calculation model for prediction of the shear resistance of grouped stud arrangements in the deck pockets. An advanced FEA model, validated by results of push-out experiments, is used to analyze the shear behavior of the grouped stud with smaller distance between them than recommended by EN 1994-1. Calculation model for shear resistance, which is consistent with the existing Eurocode rules, is proposed based on a newly introduced equivalent diameter of the stud group, $d_G$. The new calculation model is validated by comparison to the results of FE parametric study. The distance between the studs in the longitudinal direction and the number of stud rows and columns in the group are considered as the main variables.

A Development of Seismic Rehabilitation Method of RC Buildings Strengthened with X-Bracing Using Carbon Fiber Composite Cable (X-가새형 탄소섬유케이블을 이용한 중·저층 철근콘크리트 건물의 내진보강법 개발)

  • Lee, Kang-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.1-9
    • /
    • 2014
  • Improving the earthquake resistance of buildings through seismic retrofitting using steel braces can result in brittle failure at the connection between the brace and the building, as well as buckling failure of the braces. In this study, a non-compression cross-bracing system using the Carbon Fiber Composite Cable (CFCC), which consists of CFCC bracing and bolt connection was proposed to replace the conventional steel bracing. This paper presented the seismic resistance of a reinforced concrete frame strengthened using CFCC X-bracing. Cyclic loading tests were carried out, and the maximum load carrying capacity and ductility were investigated, together with hysteresis of the lateral load-drift relations. Test results revealed that the CFCC X-bracing system installed RC frames enhanced markedly the strength capacity and no buckling failure of the bracing was observed.

A component method model for blind-bolts with headed anchors in tension

  • Pitrakkos, Theodoros;Tizani, Walid
    • Steel and Composite Structures
    • /
    • v.18 no.5
    • /
    • pp.1305-1330
    • /
    • 2015
  • The successful application of the component-based approach - widely used to model structural joints - requires knowledge of the mechanical properties of the constitutive joint components, including an appropriate assembly procedure to derive the joint properties. This paper presents a component-method model for a structural joint component that is located in the tension zone of blind-bolted connections to concrete-filled tubular steel profiles. The model relates to the response of blind-bolts with headed anchors under monotonic loading, and the blind-bolt is termed the "Extended Hollo-bolt". Experimental data is used to develop the model, with the data being collected in a manner such that constitutive models were characterised for the principal elements which contribute to the global deformability of the connector. The model, based on a system of spring elements, incorporates pre-load and deformation from various parts of the blind-bolt: (i) the internal bolt elongation; (ii) the connector's expanding sleeves element; and (iii) the connector's mechanical anchorage element. The characteristics of these elements are determined on the basis of piecewise functions, accounting for basic geometrical and mechanical properties such as the strength of the concrete applied to the tube, the connection clamping length, and the size and class of the blind-bolt's internal bolt. An assembly process is then detailed to establish the model for the elastic and inelastic behaviour of the component. Comparisons of model predictions with experimental data show that the proposed model can predict with sufficient accuracy the response of the component. The model furthers the development of a full and detailed design method for an original connection technology.

Analytical, experimental and numerical study of timber-concrete composite beams for bridges

  • Molina, Julio C.;Calil, Carlito Junior;de Oliveira, Diego R.;Gomes, Nadia B.
    • Computers and Concrete
    • /
    • v.24 no.2
    • /
    • pp.103-115
    • /
    • 2019
  • In this study, the strength and stiffness (EI) of wood-concrete composite beams for bridges with T-shaped cross section were evaluated. Two types of connectors were used: connectors bonded with epoxy adhesive and connectors attached to the wood just by pre-drilling (without adhesive). The connectors consisted of common steel bars with a diameter of 12.5 mm. Initially, the strength and stiffness (EI) of the beams were analyzed by bending tests with the load applied at the third point of the beam. Subsequently, the composite beams were evaluated by numerical simulation using ANSYS software with focus on the connection system. To make the composite beams, Eucalyptus citriodora wood and medium strength concrete were used. The slip modulus K and the ultimate strength values of each type of connector were obtained by direct shear tests performed on composite specimens. The results showed that the connector glued with epoxy adhesive resulted in better strength and stiffness (EI) for the composite beams when compared to the connector fixed by pre-drilling. The differences observed were up to 10%. The strength and stiffness (EI) values obtained analytically by $M{\ddot{o}}hler^{\prime}$ model were lower than the values obtained experimentally from the bending tests, and the differences were up to 25%. The numerical simulations allowed, with reasonable approximation, the evaluation of stress distributions in the composite beams tested experimentally.

Static Test and Suggestion of Shear Strength Equation on Shear Studs in Composite Bridge (합성형 교량에서 전단연결재에 대한 정적실험 및 강도식의 제안)

  • Yi, Seong-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.43-50
    • /
    • 2018
  • In this study, to investigate the shear connection material for the composite of steel plate and bottom plate, design standards and research cases for shear connectors in various countries around the world were analyzed and shear tests were performed on the Push-out specimens with a shear connection, which transmits the horizontal shear force developed on the contact surface between the steel plate and the concrete slab due to various vertical loads acting on the bridge deck. Through Push-out tests of shear studs, of which FRP bar instead reinforcement is placed, the shear stud evaluation formula of the steel strap bottom plate was suggested. The suggested equation suggested in this study has the safety factor of approximately three times compared to allowable strength of highway bridge design criteria. In addition, compared to existing DIN standards and Viest assessment equation, the results showed similar values(approximately, 5% error).

Study on the progressive collapse resistance of CP-FBSP connections in L-CFST frame structure

  • Xiong, Qingqing;Wu, Wenbo;Zhang, Wang;Chen, Zhihua;Liu, Hongbo;Su, Tiancheng
    • Steel and Composite Structures
    • /
    • v.44 no.3
    • /
    • pp.437-450
    • /
    • 2022
  • When the vertical load-bearing members in high-rise structures fail locally, the beam-column joints play an important role in the redistribution of the internal forces. In this paper, a static laboratory test of three full-scale flush flange beam-reinforced connections with side and cover plates (CP-FBSP connection) with double half-span steel beams and single L-shaped columns composed of concrete-filled steel tubes (L-CFST columns) was conducted. The influence of the side plate width and cover plate thickness on the progressive collapse resistance of the substructure was thoroughly analyzed. The failure mode, vertical force-displacement curves, strain variation, reaction force of the pin support and development of internal force in the section with the assumed plastic hinge were discussed. Then, through the verified finite element model, the corresponding analyses of the thickness and length of the side plates, the connecting length between the steel beam flange and cover plate, and the vertical-force eccentricity were carried out. The results show that the failure of all the specimens occurred through the cracking of the beam flange or the cover plate, and the beam chord rotations measured by the test were all greater than 0.085 rad. Increasing the length, thickness and width of the side plates slightly reduced the progressive collapse resistance of the substructures. The vertical-force eccentricity along the beam length reduced the progressive collapse resistance of the substructure. An increase in the connecting length between the beam flange and cover plate can significantly improve the progressive collapse resistance of substructures.

Analysis on the Shear Behavior of Existing Reinforced Concrete Beam-Column Structures Infilled with U-Type Precast Wall Panel (U형 프리캐스트 콘크리트 벽패널로 채운 기존 철근 콘크리트 보-기둥 구조물의 전단 거동 분석)

  • Ha, Soo-Kyoung;Son, Guk-Won;Yu, Sung-Yong;Ju, Ho-Seong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.6
    • /
    • pp.18-28
    • /
    • 2015
  • The purpose of this study is to develop a new seismic resistant method by using precast concrete wall panels for existing low-rise, reinforced concrete beam-column buildings such as school buildings. Three quasi-static hysteresis loading tests were performed on one unreinforced beam-column specimen and two reinforced specimens with U-type precast wall panels. The results were analyzed to find that the specimen with anchored connection experienced shear failure, while the other specimen with steel plate connection principally manifested flexural failure. The ultimate strength of the specimens was determined to be the weaker of the shear strength of top connection and flexural strength at the critical section of precast panel. In this setup of U-type panel specimens, if a push loading is applied to the reinforced concrete column on one side and push the precast concrete panel, a pull loading from upper shear connection is to be applied to the other side of the top shear connection of precast panel. Since the composite flexural behavior of the two members govern the total behavior during the push loading process, the ultimate horizontal resistance of this specimen was not directly influenced by shear strength at the top connection of precast panel. However, the RC column and PC wall panel member mainly exhibited non-composite behavior during the pull loading process. The ultimate horizontal resistance was directly influenced by the shear strength of top connection because the pull loading from the beam applied directly to the upper shear connection. The analytical result for the internal shear resistance at the connection pursuant to the anchor shear design of ACI 318M-11 Appendix-D, agreed with the experimental result based on the elastic analysis of Midas-Zen by using the largest loading from experiment.