• Title/Summary/Keyword: Steel wheel

Search Result 160, Processing Time 0.026 seconds

A Study on the Steering Wheel Vibration affected by the Fastening Torque of the Wheel Mounting Hub Bolts of Steel Wheels (스틸휠의 체결력에 따른 조향휠 진동에 관한 연구)

  • 안세진;정의봉;유완석;김명규
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.189-195
    • /
    • 2003
  • The steel wheels are widely used in the passenger cars because of their low cost of production although the aluminum wheels have many advantages in their performance and appearance. It is known that the steering wheel vibration with steel wheels is generated more often than one with aluminum wheels. Both the constant velocity driving test and the m up test are carried out in this study to analyze the causes and path of the steering wheel vibration generated from the steel wheels. And this study shows that the steering wheel vibration is affected by the fastening torque of the wheel mounting bolts between the steel wheel and the suspension disk.

A Study on the Grinding Characteristics of Stainless Steel Using Intermittent Grinding Wheel (단속 연삭지석에 의한 스테인레스강의 연삭특성에 관한 연구)

  • Kweun, O-Byung;Kim, Jeong-Du
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.9
    • /
    • pp.2866-2874
    • /
    • 1996
  • In the grinding of difficult-to-materials, the major problmes of conventional grinding are grinding burn, wheel wear, grinding surface crack, loading and glazing, When a conventioanl grinding wheel is used, wheel wear and grinding surface crack easily occur in low heat conductive material and annealed steel. Intermittent grinding is suitable for diffcult-to-matrical such as stainless steel, titanium alloy, aluminum alloy and copper alloy. The purpose of this paper is to develop a new type intermittent wheel of the grinding system for improving the problem of stainless steel grinding, to observe the effect of intermittent grinding on surface quality and grinding characteristics of stainless steel grinding using intermittent grinding wheel. The characteristics of intermittent grinding system improve surface quality, low grinding temperature and low loading.

A Study for Improvement of Cornering Fatigue Test by Eliminating a Fretting Effect on Steel Wheel to enhance Durability and Reliability (스틸 휠 굽힘 모멘트 내구시험의 내구신뢰성 개선에 대한 연구 - 스틸 휠 접촉면의 프랫팅 제거 -)

  • Chung, Soo-Sik;Jung, Won-Wook;Yoo, Yeon-Sang;Kang, Woo-Jong;Kim, Dae-Sung;Kwon, Il-Ki
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1326-1330
    • /
    • 2008
  • The failure mode of steel road wheels in a vehicle is cracks from ventilation hole through to contact plane on steel wheel's disc plate. But a number of cracks of Cornering Fatigue Limit Test is on contact plane near to wheel nut mounting area, even though it's satisfied with specified cycles. So this paper searches out causes to improve durability and reliability of C.F.T by uni-axial bending moment test. The verified cause is a "fretting" on contact area of steel wheel. In result, this paper suggests a solution to prevent a fretting by inserting a damping shim, 0.7mm between steel wheel contact areas. Therefore this paper makes it possible to move crack position of C.F.T in steel wheel from contact plane to vehicle's failure mode.

  • PDF

Study of a Forging Process for the Application of Boron Steel for Automotive Wheel Nut Material (차량용 Wheel Nut 소재의 보론강적용을 위한 단조공정에 관한 연구)

  • Lee, Kwon-Soo;Ahn, Yong-Sik
    • Journal of Power System Engineering
    • /
    • v.21 no.2
    • /
    • pp.41-47
    • /
    • 2017
  • Boron steel (51B20) was cold forged using by new designed dies to apply for automotive aluminum wheel nut. The formability and mechanical properties of boron steel were compared with carbon steel(S45C) which has been used up to date for the wheel nut material. The formability was investigated on the dies designed with various types of punch nose using by FEM. The metal flow and compressive stress on the dies during cold forging were investigated and compared each other. The forging process with a new designed die showed the improved metal flow with a reduced forging load which resulted in the significant increase of the die life. It was recommended that the carbon steel for automotive wheel nut material could be substituted by the boron steel.

Reliability Evaluation of Rubber Wheel and Steel Wheel for Wheel Tracking Test of Bituminous Concretes (역청 콘크리트 반복주행시험에서 고무바퀴와 강재바퀴의 신뢰성 비교 연구)

  • Hong, Joon-Pyo;Doh, Young-Soo;Kim, Kwang-Woo
    • International Journal of Highway Engineering
    • /
    • v.7 no.2 s.24
    • /
    • pp.97-107
    • /
    • 2005
  • Since the purpose of wheel tracking test is to find out relative difference of mixture's rut resistance, the wheel is an important part in the test for obtaining a consistent output. This study is performed to examine efficiency of different wheel material, rubber and steel in wheel tracking test. The rubber was inserted as a ring on the outer face of the steel wheel, and thickness of rubber ring was 15mm and 7.5mm and 0mm (steel wheel without rubber), making the total outer diameter 200mm. The objective of this study was to select reliable wheel material type in wheel tracking test at $60^{\circ}C$ based on variance in output (rut depth and dynamic stability) and correlation with SD (deformation strength). The result of regression analysis of rut depth with Sd showed that $R^2$ values of wheel rubber thickness of 15mm, 7.5mm and 0mm were 0.7, 0.8 and over 0.9, respectively. In a case of steel wheel (0mm), the highest $R^2$ value was 0.9569. Therefore, the wheel without rubber ring was the best in output consistency level and coefficient of determination $(R^2)$ with deformation strength. Therefore, the steel wheel without rubber ring is suggested as the best choice for wheel tracking test of asphalt concrete.

  • PDF

A Study on the Grinding Characteristics of Stainless Steel with Optimum In-process Electrolytic Dressing (최적 연속 전해드레싱을 적용한 스테인레스 강의 연삭 특성에 관한 연구)

  • 이은상;김정두
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.5
    • /
    • pp.29-37
    • /
    • 1998
  • In recent years, grinding techniques for precision machining of stainless steel used in shaft, screw parts and clear value have been improved by using the superabrasive wheel and precision grinding machine. The completion of optimum dressing of superabrasive wheel makes possible the effective precision grinding of stainless steel. However, the present dressing system cannot have control of optimum dressing of the superabrasive wheel. In this study, a new system and the grinding mechanism of optimum in-process dressing of superabrasive wheel. Therefore, the optimum in-process electrolytic dressing is a good method to obtain the efficiency and mirror-like grinding of stainless steel (STS304)

  • PDF

Wear Resistant Steel Plate for Heavy Duty Vehicle (건설 중장비에 적용가능한 내마모 강판)

  • 김기열;이범주;조정환;류영석;이동욱
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.271-276
    • /
    • 1998
  • To apply the wear resistant steel plate for heavy duty vehicle, the wear characterisms of various kinds of commercial steel plates were invesigated by dry sand/rubber wheel tester which was tested under scratch abrasion mode. The wear tested pnaterials were boron steels which were manufactured by thereto machanical control process (TMCP) in order to achieve higher hardness. As the result of the test, wear resistance of steel plate increases with the hardness and carbon content. The wear loss of wear resistance steel plate (Hv440) is a half times than tinat of SWS490A (Hv160) steel plate in dry sand-rubber wheel test and the result in field test is similar to this dry sand/rubber wheel test result. Therefore, dry sand/rubber wheel tester can be used to predict the scratch abrasion life of the parts for heavy duty vehicle.

  • PDF

Approximate Optimization of the Steel Wheel's Disc Hole (스틸휠 디스크 홀의 근사최적화)

  • Kim, Woo-Hyun;Cho, Jae-Seng;Yoo, Wan-Suk;Lim, O-Kaung
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.570-573
    • /
    • 2003
  • Wheels for passenger car support the car weight with tires. and they transmit rolling and braking power into the ground. Whittliing away at wheel weight is more effective to boost fuel economy that lighting vehicle body structure. A shape of hole in disk is optimized for minimizing the weight of steel wheel. Pro/ENGINEER program is used for formulating the design model. and ANSYS package is selected for analyzing the design model. It has difficulties 10 interface these commercial software directly. For combining both programs. response surface methodology is applied to construct approximation functions for maximum stresses and maximum displacements are obtained by full factorial design of five levels. This steel wheel is modeled in 14-inch diameter of rim. and wide parameter of hole in disk is only selected as design variable for reducing the weight of steel wheel. PLBA(Pshenichny·Lim-Belegundu_arora) algorithm. which uses the second-order information in the direction finding problem and uses the active set strategy. is used for solving optimization problems.

  • PDF

The Effect of Optimum In-process Electrolytic Dressing in the Mirror-like Grinding of Die steel by Superfind Abrasive wheel (초지립 지석에 의한 금형강 경면연삭시 최적 연속 전해드레싱의 영향)

    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.6
    • /
    • pp.16-25
    • /
    • 1999
  • In recent years, grinding techniques for precision machining of brittle materials used in die, model and optical parts have been improved by using superfine abrasive wheel and precision grinding machine. The completion of optimum dressing of superfine abrasive wheel makes possible the effective precision grinding of die steel(STD-11). In this study, a new system and the grinding mechanism of optimum in-process electrolytic dressing were proposed. This method can carry out optimum in-process electrolytic dressing of superfine abrasive wheel. Therefore, the optimum in-process electrolytic dressing is a good method to obtain the efficiency and mirror-like grinding of STD-11.

  • PDF

Optimal Design of the Steel Wheel's Disc Hole Using Approximation Function (근사함수를 이용한 스틸휠의 디스크 홀의 최적화)

  • 임오강;유완석;김우현;조재승
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.1
    • /
    • pp.105-111
    • /
    • 2003
  • Wheel for passenger car support the car weight with tires, and they transmit rolling and braking power into the ground. Whittling away at wheel weight is more effective to boost fuel economy than lighting vehicle body structure. A shape of hole in disk is optimized for minimizing the weight of steel wheel. Pro/ENGINEER program is used for formulating the design model, and ANSYS package is selected for analyzing the design model. It has difficulties to interface these commercial software directly. For Combining both programs, response surface methodology is applied to construct approximation functions for maximum stresses and maximum displacements are obtained by full factorial design of five levels. This steel wheel is modeled in 14-inch diameter of rim, and wide parameter of hole in disk is only selected as design variable for reducing the weight of steel whee. PLBA(Pshenichny-Lim-Belegundu-Arora) algorithm, which used the second-order information in the direction finding problem and uses the active set strategy, is used for solving optimization problems.