• 제목/요약/키워드: Steel tower

검색결과 226건 처리시간 0.027초

특수 고장력전선을 사용한 장경간 가공송전선로 설계 (Design of Long Span Overhead Transmission Line using Special High-tension Wire)

  • 나상용;지평식
    • 전기학회논문지P
    • /
    • 제65권3호
    • /
    • pp.183-187
    • /
    • 2016
  • Recently, power demand has been increasing every year according to variation of electrical equipments and temperature rise in summer season. So, much more overhead line is being demanded to copy with increasing power demand and operate reliable power system. This paper analysis the characteristics of long span overhead transmission line using special high-tension wire in such as a safety factor, coefficient of elasticity, and the coefficient of linear expansion. Based on the analysis, we proposed the effectiveness of special high-tension wire having much more advantages with respect to height of steel tower and dip compared with conventional ACSR in long span overhead transmission line.

컴팩트형 철탑 설계에 관한 연구 (Study on the compact design for steel tower)

  • 이원교;박준호;최인혁;이동일;송홍준;변기식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.711-712
    • /
    • 2007
  • 전력수요의 지속적 증가에 따라 송전설비의 추가적인 건설은 불가피하지만 토지구입비 증대 및 님비현상 등에 따른 토지구입난 등의 건설여건의 악화에 따라 보다 더 최적화 된 송전철탑의 도입이 요구되고 있다. 고분자소재 및 성형기술의 발달로 금속의 기계적 강도를 능가하는 절연성능을 가진 고분자 복합재료의 제작이 가능하게 되면서 큰 기계적 강도가 요구되는 철탑의 암(arm)을 고강도 FRP(Fiber glass Reinforced Plastics)를 적용한 암 절연물(braced post insulator)로 대체하려는 시도가 진행되고 있다. 본 논문은 기존의 철탑에서 도체를 지지하고 고전압이 인가된 도체의 공간적 절연 유지를 위하여 사용되던 무거운 금속 암과 애자련 대신 중심부분을 전기적 특성과 내환경성이 우수한 암 절연물을 사용한 154kV급 철탑 설계 방법과 컴팩트화 방법에 대해 제시하고자 한다.

  • PDF

고층 구조물의 진동제어를 위한 복합형 질량댐퍼의 제어력 설계에 관한 연구 (A Study on the control force of HMD for vibration control of the tall building structure)

  • 박진일;박해동;최현;김두훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.276-281
    • /
    • 2000
  • As the construction of the high-rise building increases worldwide, the effort has been exerted to improve the safety and serviceability if the structure against various types of external dynamic loads such as wind load, seismic load, etc. The mass damper, defined as dynamic absorber in mechanical engineering is known one of the effective methods to control the vibration of flexible large structures. The hybrid mass damper, HMD is known as the most appropriate type of the mass dampers. In this paper, the control force was designed for HMD by numerical simulations and the performance of HMD to control the flexible vibration of the steel tower induced by sinusoidal force excitation was evaluated, also TMD was designed for a 1-DOF lumped mass model.

  • PDF

가공송전선 유도장해 특성을 고려한 최적 상배열 연구 (Study on Optimal Phase Arrangement Considering the Characteristics of Inductive Interference from Overhead Transmission Lines)

  • 강경두;김진규
    • 전기학회논문지
    • /
    • 제68권1호
    • /
    • pp.13-18
    • /
    • 2019
  • The domestic overhead transmission lines use a vertical configuration and reverse phase arrangement, but when there is a limitation in steel tower height because the transmission lines pass a height limit zone or special zone, an application of triangular arrangement is necessary, and a study on the optimal phase arrangement to minimize inductive interference for this is necessary. If conductor arrangement are changed, the action of electrostatic induction and electromagnetic induction becomes different from before changes, so the changed conductor arrangement should be reviewed in terms of inductive interference. So this paper presents an optimal phase arrangement to reduce inductive interference by calculating electrostatic induction and electromagnetic induction according to conductor arrangement.

Applications of Solid Viscoelastic Coupling Dampers (VCDs) in Wind and Earthquake Sensitive Tall Buildings

  • Montgomery, Michael;Ardila, Luis;Christopoulos, Constantin
    • 국제초고층학회논문집
    • /
    • 제10권2호
    • /
    • pp.123-135
    • /
    • 2021
  • Solid Viscoelastic Coupling Dampers (VCDs) provide distributed damping that improves the dynamic performance of tall buildings for both wind-storms and earthquakes for all amplitudes of vibration. They are configured in place of typical structural members in tall buildings and therefore do not occupy any architectural space. This paper summarizes the research and development at the University of Toronto in collaboration with Nippon Steel Engineering, 3M and Kinetica over the past two decades. In addition, impact studies on buildings incorporating the VCDs are presented, consisting of a wind sensitive 66-story building in Toronto, a dual-wind and seismic performance-based design of a 4-tower development in Manila and finally a 630 meter Megatall building in Southeast Asia in a severe seismic environment. In all applications the VCDs are shown to provide significant benefits in the dynamic performance under both wind and earthquake loading in a cost-effective manner.

연약지반 개량 PBD 복합천공기 리더의 구조 안전성 평가 (Structural Safety Evaluation of PBD Composite Perforator's Leader for Soft Ground Improvement)

  • 김민호
    • 한국기계기술학회지
    • /
    • 제20권6호
    • /
    • pp.894-900
    • /
    • 2018
  • Among the soft ground improvement methods, PBD is the most common construction method because it is cheap and construction is fast. However, if the ground is rigid, additional work is required. In this study, the structural safety, natural vibration, and safety angle of the steel vertical tower structure were evaluated in the development of the PBD composite perforator which can be combined with drilling work and PBD construction. Structural safety was assessed when the wind load of 20 m/s was simultaneously applied to the PBD construction load of 20 tons, the perforating operation of 25 tons, and the wind speed of 50 m/s was applied only to the wind load. The natural frequencies were evaluated up to the sixth mode, and the safety angle was evaluated for static and dynamic safety angles.

Comparative study on the structural behavior of a transition piece for offshore wind turbine with jacket support

  • Ma, Chuan;Zi, Goangseup
    • Steel and Composite Structures
    • /
    • 제43권3호
    • /
    • pp.363-373
    • /
    • 2022
  • As a key reinforcement connection between a tower and a substructure in offshore wind turbine system, the transition piece is inevitably subjected to cyclic dynamic environmental loads such as wind, current and wave. Therefore, well designed transition piece with high strength and good fatigue resistance is of great significance to the structural safety and reliability of offshore wind power systems. In this study, the structural behavior of the transition piece was studied by an extensive sets of finite element analyses. Three widely used types of transition piece were considered. The characteristics of stress development, fatigue life and weight depending on the type of the transition piece were investigated in the ultimate limit state (ULS) and the fatigue limit state (FLS) of a 5-MW offshore wind turbine to be placed in Korea. An optimal form of the transition piece was proposed based on this parametric study.

Design and Construction of GINZA KABUKIZA

  • Kawamura, Hiroshi;Ishibashi, Yoji;Morofushi, Tsutomu;Saragai, Yasuyuki;Inubushi, Akira;Yasutomi, Ayako;Fuse, Naohiko;Yoshifuku, Manabu;Saitoh, Kouji
    • 국제초고층학회논문집
    • /
    • 제5권3호
    • /
    • pp.233-241
    • /
    • 2016
  • This paper describes the structural solution for the design of a 29-story high-rise tower, which features a large office space above the Kabukiza Theatre. Kabuki is a type of Japanese traditional drama, and Kabukiza is the home building of Kabuki. GINZA KABUKIZA is the fifth generation of the Kabukiza Theatre, the first of which was built in 1889. In order to support 23 stories of office space above the theater - featuring a large void in plan - two 13-meter-deep mega-trusses, spanning 38.4 meters, are installed at the fifth floor of the building. Steelwork is used as a primary material for the structure above-ground, and a hybrid response control system using a buckling-restrained brace and oil damper is adopted in order to achieve a high seismic performance. This paper also describes the erection process of installing hydraulic jacks directly above the mega-truss at column bases, in order to keep the structure above the truss level during construction. The temple architecture of the previous Kabukiza is carefully restored by incorporating contemporary light-weight materials supported by steelwork.

강재 전력시설물을 위한 액상 규산질 도장제 개발에 대한 연구 (Development of Fluid Silicic Acid Coating with Paint Materials of the Steel Electric Power Facilities)

  • 권성준;박상순;이상민;이명훈
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제12권1호
    • /
    • pp.57-64
    • /
    • 2008
  • 일반적으로 강재시설물에 사용되는 유기에폭시 도장의 경우, 일반적인 조건에서는 우수한 내구성을 보이고 있으나, 송/배전 시설물인 강재전력시설물과 같이 빛(자외선)이나 열에 노출되는 환경에서는 도막자체의 열화현상에 의한 피해가 더욱 심각하게 증가하고 있다. 본 연구의 목적은 무기계 액상 규산질을 기초로 한 강재용 도장제를 개발하는 것이다. 이를 위해 6가지 예비실험을 거쳐서 최적의 배합조건을 도출하였으며, 물리적 특성실험 및 내구성 실험을 수행하였다. 실험결과 개발된 무기계 도료는 현재의 유기계 도료의 성능을 확보하고 있었으며, 내화학성에 대한 저항성이 개선된다면, 강재 시설물의 대체 도료로 사용될 수 있으며, 그 적용성이 더욱 증가할 것으로 평가되었다.

Multi-point earthquake response of the Bosphorus Bridge to site-specific ground motions

  • Bas, Selcuk;Apaydin, Nurdan Memisoglu;Harmandar, Ebru;Catbas, Necati
    • Steel and Composite Structures
    • /
    • 제26권2호
    • /
    • pp.197-211
    • /
    • 2018
  • The study presents the earthquake performance of the Bosphorus Bridge under multi-point earthquake excitation considering the spatially varying site-specific earthquake motions. The elaborate FE model of the bridge is firstly established depending on the new considerations of the used FEM software specifications, such as cable-sag effect, rigid link and gap elements. The modal analysis showed that singular modes of the deck and the tower were relatively effective in the dynamic behavior of the bridge due to higher total mass participation mass ratio of 80%. The parameters and requirements to be considered in simulation process are determined to generate the spatially varying site-specific ground motions. Total number of twelve simulated ground motions are defined for the multi-support earthquake analysis (Mp-sup). In order to easily implement multi-point earthquake excitation to the bridge, the practice-oriented procedure is summarized. The results demonstrated that the Mp-sup led to high increase in sectional forces of the critical components of the bridge, especially tower base section and tensile force of the main and back stay cables. A close relationship between the dynamic response and the behavior of the bridge under the Mp-sup was also obtained. Consequently, the outcomes from this study underscored the importance of the utilization of the multi-point earthquake analysis and the necessity of considering specifically generated earthquake motions for suspension bridges.