• 제목/요약/키워드: Steel substrate

검색결과 475건 처리시간 0.031초

Ni-Cr-Mo-V 내열강의 마찰마모 특성 연구 (A Study on Tribological Characteristics for High Temperature Alloy Steel with Ni-Cr-Mo-V)

  • 임호기;배문기;김태규
    • 열처리공학회지
    • /
    • 제29권6호
    • /
    • pp.284-291
    • /
    • 2016
  • High temperature alloy steel such as Ni-Cr-Mo-V material has excellent properties of high strength and high heating resistance. It has been used for several military weapon components such as gun barrel of a warship, turbine rotor and turbine disk for nuclear power plant. Being curious about this material required excellent wear resistance and durability in extreme environmental conditions. A dry wear test at the ambient air and Ar gas conditions in the room temperature were performed in this study. What's more a lubricant wear test at different temperature was conducted. In addition that DLC was coated on Ni-Cr-Mo-V alloy steel substrate with a thickness of $3{\mu}m$, a property of it was compare with lubricant conditions. All the coefficient of friction and wear volume, comparing with DLC coated specimens. The test parameters were selected as follows: 10 N for normal load; 80 rpm for sliding wear speed; and 300 m for the sliding wear distance.

시일과 코팅된 스틸면 사이의 구형 입자에 의한 접촉해석 (Contact Analysis Between Rubber Seal, a Spherical Particle and Coated Steel Surface)

  • 박태조;조현동
    • Tribology and Lubricants
    • /
    • 제25권4호
    • /
    • pp.225-230
    • /
    • 2009
  • Seals are very useful machine components in protection of leakage of lubricant or working fluid, and incoming of debris from outside. Various elastomer are widely used as sealing materials and the shaft surfaces are generally coated with high hardness material after heat treatment. It is generally known that the foreign debris and wear particles get stuck into sealing surface, the steel shaft surface can be damaged and worn by mainly abrasive wear. In this paper, using MARC, contact analysis are conducted to show the hard coated steel shaft surface can be fatigue failed by very small elastic particle intervened between seal and steel surface. Variations of contact and von-Mises stress distributions and contact half-widths with interference and coating thickness are presented. The maximum von-Mises stress occurs always in the coating layer or between coated layer/substrate interface. Therefore the coated sealing surface can be fatigued and then failed by very small particles. The results can be used in design of sealing surface and further studies are required.

나노 인덴테이션 실험과 유한요소해석을 이용한 전기아연도금강판의 코팅층 체적 거동 결정 (Determination of Deformation Behavior of Coating Layer on Electronic galvanized Sheet Steel using Nano-indentation and FEM)

  • 고영호;이정민;김병민
    • 한국정밀공학회지
    • /
    • 제22권10호
    • /
    • pp.186-194
    • /
    • 2005
  • This study was designed to investigate the mechanical properties of the coating layer on electronic galvanized sheet steel as a part of the ongoing research on the coated steel. Those properties were determined using nano-indentation, the finite element method, and artificial neural networks. First and foremost, the load-displacement curve (the loading-unloading curve) of coatings was derived from a nano-indentation test by CSM (continuous stiffness measurement) and was used to measure the elastic modulus and hardness of the coating layer. The properties derived were applied in FE simulations of a nano-indentation test, and the analytical results were compared with the experimental result. A numerical model for FE simulations was established for the coating layer and the substrate separately. Finally, to determine the mechanical properties of the coating, such as the stress-strain curve, functional equations of loading and unloading curves were introduced and computed using the neural networks method. The results show errors within $5\%$ in comparison with the load-displacement measured by a nano-indentation test.

선체 구조용 강재에 대한 Al과 Zn 아크용사코팅 층의 캐비테이션 손상 특성 (Cavitation Damage Characteristics of Al and Zn Arc Thermal Spray Coating Layers for Hull Structural Steel)

  • 박일초;김성종
    • 한국표면공학회지
    • /
    • 제49권1호
    • /
    • pp.32-39
    • /
    • 2016
  • In this study, Al and Zn arc thermal spray coatings were carried out onto the substrate of SS400 steel to improve corrosion resistance and durability of hull structural steel for ship in marine environment. Therefore cavitation-erosion test was conducted to evaluate the durability of painted and thermal spray coated specimens. And then the damaged surface morphology and weight loss were obtained to compare with each other, respectively. As a result, the painted specimen was the poorest cavitation resistance characteristics because surface damage behavior appeared to be exfoliated in bulk shape during the cavitation experiment. And Zn thermal spray coating layer presented the significant surface damage depth due to relatively low surface hardness and local cavitation damage tendency. On the other hand, as a result of the weight loss analysis, the painting layer presented the poorest cavitation resistance and the Al thermal spray coating layer relatively showed the best results after cavitation experiment.

고분자전해질 연료전지용 바이폴라 플레이트의 다층 코팅의 증착 (Multi-layered Coating Deposited on PEMFC (Proton Exchange Membrane Fuel Cell) Bipolar Plates)

  • 윤영훈;정훈택;차인수;최정식;김동묵;정진호
    • 한국세라믹학회지
    • /
    • 제45권8호
    • /
    • pp.472-476
    • /
    • 2008
  • The surface region of commercial stainless steel 304 and 316 plates has been modified through deposition of the multi-layered coatings composed of titanium film ($0.1{\mu}m$) and gold film ($1-2{\mu}m$) by an electron beam evaporation method. XRD patterns of the stainless steel plates deposited with conductive metal films showed the peaks of the external gold film and the stainless steel substrate. Surface microstructural morphologies of the stainless steel bipolar plates modified with multi-layered coatings were observed by AFM and FE-SEM images. The stainless steel plates modified with $0.1{\mu}m$ titanium film and $1{\mu}m$ gold film showed microstructure of grains of under 100 nm diameter. The external surface of the stainless steel plates deposited with $0.1{\mu}m$ titanium film and $2{\mu}m$ gold film represented somewhat grain growth of Au grains in FE-SEM image. The electrical resistance and water contact angle of the stainless steel bipolar plates modified with multi-layered coatings were examined with the thickness of the gold film.

Effect of Al and Mg Contents on Wettability and Reactivity of Molten Zn-Al-Mg Alloys on Steel Sheets Covered with MnO and SiO2 Layers

  • Huh, Joo-Youl;Hwang, Min-Je;Shim, Seung-Woo;Kim, Tae-Chul;Kim, Jong-Sang
    • Metals and materials international
    • /
    • 제24권6호
    • /
    • pp.1241-1248
    • /
    • 2018
  • The reactive wetting behaviors of molten Zn-Al-Mg alloys on MnO- and amorphous (a-) $SiO_2$-covered steel sheets were investigated by the sessile drop method, as a function of the Al and Mg contents in the alloys. The sessile drop tests were carried out at $460^{\circ}C$ and the variation in the contact angles (${\theta}_c$) of alloys containing 0.2-2.5 wt% Al and 0-3.0 wt% Mg was monitored for 20 s. For all the alloys, the MnO-covered steel substrate exhibited reactive wetting whereas the $a-SiO_2$-covered steel exhibited nonreactive, nonwetting (${\theta}_c>90^{\circ}$) behavior. The MnO layer was rapidly removed by Al and Mg contained in the alloys. The wetting of the MnO-covered steel sheet significantly improved upon increasing the Mg content but decreased upon increasing the Al content, indicating that the surface tension of the alloy droplet is the main factor controlling its wettability. Although the reactions of Al and Mg in molten alloys with the $a-SiO_2$ layer were found to be sluggish, the wettability of Zn-Al-Mg alloys on the $a-SiO_2$ layer improved upon increasing the Al and Mg contents. These results suggest that the wetting of advanced high-strength steel sheets, the surface oxide layer of which consists of a mixture of MnO and $SiO_2$, with Zn-Al-Mg alloys could be most effectively improved by increasing the Mg content of the alloys.

무도장 내후성강의 장기 내식성 및 그 현장즉시측정법 (Long-term corrosion-resistance of an uncoated weathering steel and its on-line and in-situ measurements)

  • 박정렬;김규영
    • 한국강구조학회 논문집
    • /
    • 제16권4호통권71호
    • /
    • pp.415-423
    • /
    • 2004
  • 옥외 강구조물의 중요 소재인 무도장 내후성강의 장기 내식성을 평가하기 위해 우선 9년 이상 산업대기와 전원대기에 폭로된 본 강판 및 비교재 일반강판 시편의 천향면에 대해 중성의 인공우수에 침적시켜 전기화학적 부식전위, 임피던스 및 동전위 양분극 곡선으로 측정 및 그 결과를 고찰하였다. 산업대기 및 전원대기에 천향면으로 폭로된 내후성강 표면에는 부동태적인 안정화 녹층이 발달하였으며, 산업대기 폭로 표면의 인공우수에서의 부식속도는 $3{{\mu}m}/y$로 측정되어 우수한 내후내식 녹층으로 덮혀 있었다. 지속적으로 인공우수에 침적시키면 모든 시편 녹층은 점진적으로 열화되어 모재 철분의 양극산화용해 율속의 부식으로 진전됨을 나타내었다. 내후성 합금성분은 이런 부식의 진전을 지연시키고 있었다. 장기 내식성을 잘 평가하기 위해서는 9년보다 훨씬 장기간 대기폭로된 강재표면과 해당 대기 응축수 모사 수용액을 이용한 전기화학적 측정이 필요하다. 특히 본 측정방법들은 강재 표면의 원하는 부위와 폭로시간대에 거의 비파괴적으로 부식상황과 녹층의 상태와 정량적인 부식속도를 직접 바로 측정할 수 있게 하므로 강재를 사용한 교량, 탑, 건축물 등의 강구조물의 표면에 전기화학적 cell을 구성하고 이동측정기를 사용하면 강구조물의 내후 내식성을 현장즉시 측정 및 평가를 효과적으로 가능하게 할 수 있다.

레이저 용융 금속 적층 시 결함 방지를 위한 혼합 분말 적층에 관한 연구 (A Study on the Laser Melting Deposition of Mixed Metal Powders to Prevent Interfacial Cracks)

  • 심도식;이욱진;이슬비;최윤석;이기용;박상후
    • 소성∙가공
    • /
    • 제27권1호
    • /
    • pp.5-11
    • /
    • 2018
  • Direct energy deposition (DED) technique uses a laser heat source to deposit a metal layer on a substrate. Many researchers have used the DED technique to study the hardfacing of molds and dies. The aim of this study is to obtain high surface hardness and a sound bonding between the AISI M4 deposits and a substrate utilizing a mixed powder that contains M4 and AISI P21 powders. To prevent interfacial cracks between the M4 deposits and the substrate, the mixed powder is pre-deposited onto a JIS S45C substrate, before the deposition of M4 powders. Interfacial defects occurring between the deposits and substrate and changes in the microhardness of the intermediate layer were examined. Observations of the cross-sections of deposited specimens revealed that the interfacial cracks appeared in samples with one and two mixed layers regardless of the mixture ratio. However, the crack was removed by increasing the mixture ratio and the number of intermediate layers. Meanwhile, the microhardness in the mixed layer was found to decrease with increasing ratio of P21 powder in the mixture and that in the upper region of the deposited layers was approximately 800 HV, which was attributed to various alloying elements in the M4 powder.

DED 공정을 이용한 S45C 위 Hastelloy X 분말 적층 시 기저부 상과 경사각이 적층부 인근 열전달 특성에 미치는 영향에 관한 연구 (Influence of Substrate Phase and Inclination Angle on Heat Transfer Characteristics in Vicinity of Hastelloy X Regions Deposited on S45C via Directed Energy Deposition)

  • 백선호;이광규;안동규;김우성;이호진
    • 한국기계가공학회지
    • /
    • 제20권10호
    • /
    • pp.27-37
    • /
    • 2021
  • The use of additive manufacturing processes for the repair and remanufacturing of mechanical parts has attracted considerable attention because of strict environmental regulations. Directed energy deposition (DED) is widely used to retrofit mechanical parts. In this study, finite element analyses (FEAs) were performed to investigate the influence of the substrate phase and inclination angle on the heat transfer characteristics in the vicinity of Hastelloy X regions deposited via DED. FE models that consider the bead size and hatch distance were designed. A volumetric heat source model with a Gaussian distribution in a plane was adopted as the heat flux model for DED. The substrate and the deposited powder were S45C structural steel and Hastelloy X, respectively. Temperature-dependent thermal properties were considered while performing the FEAs. The effects of the substrate phase and inclination angle on the temperature distributions and depth of the heat-affected zone (HAZ) in the vicinity of the deposited regions were examined. Furthermore, the influence of deposition paths on depths of the HAZ were investigated. The results of the analyses were used to determine the suitable phase and inclination angle of the substrate as well as the appropriate deposition path.

Winkler spring behavior in FE analyses of dowel action in statically loaded RC cracks

  • Figueira, Diogo;Sousa, Carlos;Neves, Afonso Serra
    • Computers and Concrete
    • /
    • 제21권5호
    • /
    • pp.593-605
    • /
    • 2018
  • A nonlinear finite element modeling approach is developed to assess the behavior of a dowel bar embedded on a single concrete block substrate, subjected to monotonic loading. In this approach, a discrete representation of the steel reinforcing bar is considered, using beam finite elements with nonlinear material behavior. The bar is connected to the concrete embedment through nonlinear Winkler spring elements. This modeling approach can only be used if a new constitutive model is developed for the spring elements, to simulate the deformability and strength of the concrete substrate. To define this constitutive model, an extensive literature review was conducted, as well as 3 experimental tests, in order to select the experimental data which can be used in the calibration of the model. Based on this data, an empirical model was established to predict the global dowel response, for a wide range of bar diameters and concrete strengths. This empirical model provided the information needed for calibration of the nonlinear Winkler spring model, valid for dowel displacements up to 4 mm. This new constitutive model is composed by 5 stages, in order to reproduce the concrete substrate response.