• Title/Summary/Keyword: Steel substrate

Search Result 470, Processing Time 0.039 seconds

Investigation of Streaky Mark Defect on Hot Dip Galvannealed IF Steel

  • Xinyan, Jin;Li, Wang;Xin, Liu
    • Corrosion Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.109-115
    • /
    • 2010
  • Interstitial-free (IF) steels are widely used for car body material. However, a few types of streaky mark defect are commonly found on hot dip galvannealed (GA) IF steel sheets. In the present study, both the phase structure of a streaky mark defect and the microstructure of the substrate just below it were characterized by optical microscopy (OM) and scanning electron microscopy (SEM). It was found that the bright streaky mark area was composed of ${\delta}$ phase while the dark normal area was full of craters. More than half of the grains at the uppermost surface of the substrate just below the streaky mark defect are unrecrystallized grains which could result from lower finish rolling temperature during hot rolling and be kept stable during the annealing process, while almost all the grains in the normal area are equiaxed grains. In order to confirm the effect of the unrecrystallized grains on the coating morphology, hot dip galvannealing simulation experiments were carried out in IWATANI HDPS. It is proved that the unrecrystallized grains accelerate the Fe-Zn reaction rate during galvannealing and result in a flatter coating surface and an even coating thickness. Finally, a formation mechanism of the streaky mark defect on the hot dip galvannealed IF steel sheet was discussed.

Hardness and Corrosion Resistance of Surface Composites Fabricated with Fe-based Metamorphic Powders by High-energy Electron Beam Irradiation

  • Nam, Dukhyun;Lee, Kyuhong;Lee, Sunghak;Young, Kyoo
    • Corrosion Science and Technology
    • /
    • v.7 no.6
    • /
    • pp.301-306
    • /
    • 2008
  • Surface composite layers of 1.9~2.9 mm in thickness were fabricated by depositing metamorphic powders on a carbon steel substrate and by irradiating with a high-energy electron beam. In the surface composite layers, 48~64 vol.% of $Cr_{2}B$ or $Cr_{1.65}Fe_{0.35}B_{0.96}$ borides were densely precipitated in the austenite or martensite matrix. These hard borides improved the hardness of the surface composite layer. According to the otentiodynamic polarization test results of the surface composites, coatings, STS304 stainless steel, and carbon steel substrate, the corrosion potential of the surface composite fabricated with 'C+' powders was highest, and its corrosion current density was lowest, while its pitting potential was similar to that of the STS304 steel. This indicated that the overall corrosion resistance of the surface composite fabricated with 'C+' powders was the best among the tested materials. Austenite and martensite phases of the surface composites and coatings was selectively corroded, while borides were retained inside pits. In the coating fabricated with 'C+' powders, the localized corrosion additionally occurred along splat boundaries, and thus the corrosion resistance of the coating was worse than that of the surface composite.

Inhibitory Effect of Benzoate-intercalated Hydrotalcite with Ce3+-loaded clay on Carbon Steel

  • Thuy Duong Nguyen;Thu Thuy Pham;Anh Son Nguyen;Ke Oanh Vu;Gia Vu Pham;To Thi Xuan Hang
    • Corrosion Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • This work studied the inhibitory effect of the combination of benzoate-intercalated hydrotalcite (HT-BZ) and Ce3+-loaded clay (Clay-Ce) on carbon steel (CS). HT-BZ was prepared by the co-precipitation method and Clay-Ce was fabricated by a cation exchange reaction. HT-BZ and Clay-Ce were assessed by scanning electron microscopy (SEM) and X-ray diffraction (XRD) coupled with zeta potential measurement. Electrochemical measurements coupled with scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDX) were used for studying the inhibitory action of the mixture of HT-BZ and Clay-Ce on steel electrodes immersed in 0.1 M NaCl. For comparison, the inhibitory effect of HT-BZ or Clay-Ce alone was also evaluated. The results showed that HT-BZ combined with Clay-Ce provided synergistic inhibition of the CS substrate. The mixture of 0.5 g/L HT-BZ + 0.5 g/L Clay-Ce provided 93.5% inhibition efficiency. The protective mechanism of the HT-BZ + Clay-Ce mixture consisted of the reaction of released BZ and Ce3+ and the deposition of HT-BZ and Clay-Ce structures on the CS substrate.

Wetting of Galvanised Steel by An Epoxy Adhesive: Effects of Surface Oil

  • Shanahan, M.E.R.;Greiveldinger, M.
    • Journal of Adhesion and Interface
    • /
    • v.3 no.1
    • /
    • pp.20-23
    • /
    • 2002
  • The wetting properties of an uncured epoxy resin on both clean and oiled, galvanised steel have been studied. Since the polymer is very viscous at ambient temperature, and also with an aim to simulate industrial conditions, the spreading of drops of resin during a heating cycle (temperature increase at $10^{\circ}C/min$) was recorded and analysed. On clean steel, a contact angle, ${\theta}$, vs time, t, plot shows sigmoidal behaviour, whereas on the oiled substrate, spreading almost ceases in an intermediate stage. This strange behaviour is attributed to significant oil absorption by the polymer.

  • PDF

Planarization of SUS310 Metal Substrate Used for Coated Conductor Substrate by Chemical Solution Coating Method (화학적인 용액 코팅방법에 의한 박막형 고온초전도체에 사용되는 SUS310 금속모재의 평탄화 연구)

  • Lee, J.B.;Lee, H.J.;Kim, B.J.;Kwon, B.K.;Kim, S.J.;Lee, J.S.;Lee, C.Y.;Moon, S.H.;Lee, H.G.;Hong, G.W.
    • Progress in Superconductivity
    • /
    • v.12 no.2
    • /
    • pp.118-123
    • /
    • 2011
  • The properties of $2^{nd}$ generation high temperature superconducting wire, coated conductor strongly depend on the quality of superconducting oxide layer and property of metal substrate is one of the most important factors affecting the quality of coated conductor. Good mechanical and chemical stability at high temperature are required to maintain the initial integrity during the various process steps required to deposit several layers consisting coated conductor. And substrate need to be nonmagnetic to reduce magnetization loss for ac application. Hastelloy and stainless steel are the most suitable alloys for metal substrate. One of the obstacles in using stainless steel as substrate for coated conductor is its difficulties in making smooth surface inevitable for depositing good IBAD layer. Conventional method involves several steps such as electro polishing, deposition of $Al_2O_3$ and $Y_2O_3$ before IBAD process. Chemical solution deposition method can simplify those steps into one step process having uniformity in large area. In this research, we tried to improve the surface roughness of stainless steel(SUS310). The precursor coating solution was synthesized by using yttrium complex. The viscosity of coating solution and heat treatment condition were optimized for smooth surface. A smooth amorphous $Y_2O_3$ thin film suitable for IBAD process was coated on SUS310 tape. The surface roughness was improved from 40nm to 1.8 nm by 4 coatings. The IBAD-MgO layer deposited on prepared substrate showed good in plane alignment(${\Delta}{\phi}$) of $6.2^{\circ}$.

Surface treatment of bipolar plates for PEMFC (Proton Exchange Membrane Fuel Cell) application (PEMFC (Proton Exchange Membrane Fuel Cell)용 바이폴라 플레이트 표면개질)

  • Jeon, Gwang-Yeon;Yun, Young-Hoon;Cha, In-Su
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.643-645
    • /
    • 2008
  • Stainless steel 304 and 316 plates were deposited with the multi-layered coatings of titanium film (0.1um) and gold film (1-2um) by an electron beam evaporation method. The XRD patterns of the stainless steel plates modified with the multi-layered coatings showed the crystalline phases of the external gold film and the stainless steel substrate. Surface microstructural morphologies of the stainless steel bipolar plates modified with multi-layered coatings were observed by AFM and FE-SEM images. The external gold films formed on the stainless steel plates showed microstructure of grains of about 100nm diameter. The grain size of the external surface of the stainless steel plates increased with the gold film thickness. The electrical resistance and water contact angle of the stainless steel bipolar plates covered with multi-layered coatings were examined with the thickness of the external gold film.

  • PDF

Effects of Catalyst Metal and Substrate Temperature on a Flame Synthesis of Carbon Nanomaterials (화염을 이용한 탄소나노튜브와 나노섬유의 합성에 미치는 촉매금속 및 기판온도의 영향)

  • Lee, Gyo-Woo;Jurng, Jong-Soo;Hwang, Jung-Ho
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.2
    • /
    • pp.27-33
    • /
    • 2003
  • Synthesis of carbon nanomaterials on a metal substrate by an ethylene fueled inverse diffusion flame was illustrated. Stainless steel plates were used for the catalytic metal substrate. The effects of catalyst metal particles were investigated through $Fe(NO_3){_3}$ (ferric nitrate, nonahydrate) and $Ni(NO_3){_2}$ (nickel nitrate, hexahydrate). Carbon nanotubes and nanofibers with diameters of $30{\sim}70nm$ were found on the substrate for the case of using SUS304 substrates only and using them with metal nitrates. In case of using metal nitrates, due to the easy activation of the metal particles, the formation and growth of carbon nanomaterials were occurred in the lower temperature region than that of using SUS304 substrates only.

  • PDF

A Study on the Wear Resistance Behaviors of TiN Films on Tool Steels by Cathode Arc Ion Plating Method (음극아크 이온 플레이팅법에 의한 공구강상의 TiN 피막의 내마모 특성에 관한 연구)

  • 김강범;정창준;백영남
    • Journal of the Korean institute of surface engineering
    • /
    • v.28 no.6
    • /
    • pp.343-351
    • /
    • 1995
  • Titanium nitride films have been prepared on various substrates (silicon wafer, HSS) by cathode arc ion plating process to measure microhardness, adhesion and wear-resistant behaviors by changing the substrate bias voltages (0∼-300V), thickness and roughness. Microhardnesses were measured by micro vickers hardness tester, the adhesion strengths were evaluated by acoustic signals through the scratch test with incremental applied load. As the substrate bias voltages were increased, the {111} orientation was predominant, the microhardnesses and adhesion strengths of tool steel were observed to be stronger than those of without subatrate bias voltage. Adhesion strengths of the substrate bias were 4-7 times higher than those of without the substrate bias, confirmed by SEM with EDX. Wear resistances were used pin-on-disk tribotester and TiN costing reduced the abrasive wear. As the substrate bias was increased, the weight loss and the friction coefficient was decreased.

  • PDF

The Effect of Oxide Layer Formed on TiN Coated Ball and Steel Disk on Friction Characteristics in Various Sliding Conditions (미끄럼조건에 따라 TiN 코팅볼과 스틸디스크에 형성되는 산화막이 마찰특성에 미치는 영향)

  • 조정우;이영제
    • Tribology and Lubricants
    • /
    • v.17 no.6
    • /
    • pp.459-466
    • /
    • 2001
  • In this study, the effects of oxide layer formed on the contact parts of TiN coated ball and steel disk on friction characteristics in various sliding conditions were investigated. AISI52100 steel ball was used for the substrate of coated ball specimens, which were prepared by depositing TiN coating with 1(m in coating thickness. AISI1045 steel was used for the disk type counter-body. To investigate the effect of oxide layer on the contact parts of two materials, the tests were performed both in air for forming oxide layer on the contact parts and in nitrogen environment to avoid oxidation. From the test results, the frictional characteristic between the two materials was predominated by iron oxide layer that formed on wear tract of counter-body and this layer caused friction transition and high friction. And the adhesive wear occurred from steel disk to TiN coated ball caused the formation of oxide layer on counter parts between the two materials.

Finite Element Analysis of Powdering of Hot-dip Galvannenled Steel using Damage Model (합금화 용융아연 도금강판의 가공시 손상모델을 이용한 도금층 파우더링에 관한 유한요소 해석)

  • Kim, D.W.;Kim, S.I.;Jang, Y.C.;Lee, Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.215-222
    • /
    • 2007
  • Coating of Hot-dip galvannealed steel consists of various Fe-Zn intermetallic compounds. Since the coating is hard and there for is very brittle, the surface of steel sheet is easy to be ruptured during second manufacturing processing. This is called as powdering. In addition, forming equipment might be polluted with debris by powdering. Therefore, various research have been carried out to prohibit powdering fur improving the quality of GA steel. This paper carried out finite element analysis combined with damage model which simulate the failure of local layer of hot-dip galvannealed steel surface during v-bending test. Since the mechanical property of intermetallic compound was unknown exactly, we used the properties calculated from measurements. The specimen was divided into substrate, coating layer and interface layer. Local failure at coating layer or interface layer was simulated when elemental strain reached a prescribed strain.

  • PDF