• Title/Summary/Keyword: Steel substrate

Search Result 477, Processing Time 0.024 seconds

Optimization of Resistance Spot Weld Condition for Single Lap Joint of Hot Stamped 22MnB5 by Taking Heating Temperature and Heating Time into Consideration (핫스템핑 공정에서 가열온도 및 유지시간을 고려한 22MnB5의 단일겹치기 저항 점용접 조건 최적화)

  • Choi, Hong-Seok;Kim, Byung-Min;Park, Geun-Hwan;Lim, Woo-Seung;Lee, Sun-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.10
    • /
    • pp.1367-1375
    • /
    • 2010
  • In this study, optimization of the process parameters of the resistance spot welding of a sheet of aluminum-coated boron alloyed steel, 22MnB5, used in hot stamping has been performed by a Taguchi method to increase the strength of the weld joint. The process parameters selected were current, electrode force, and weld time. The heating temperature and heating time of 22MnB5 are considered to be noise factors. It was known that the variation in the thickness of the intermetallic compound layer between the aluminum-coated layer and the substrate, which influences on the formation of nugget, was generated due to the difference of diffusion reaction according to heating conditions. From the results of spot weld experiment, the optimum weld condition was determined to be when the current, electrode force, and weld time were 8kA, 4kN, and 18 cycles, respectively. The result of a test performed to verify the optimized weld condition showed that the tensile strength of the weld joint was over 32kN, which is considerably higher than the required strength, i.e., 23kN.

Mechanical Properties of Ta/TaN Multilayer (Ta/TaN 복합 다층 피막의 기계적 특성)

  • Gang, Yeong-Gwon;Lee, Jong-Mu;Choe, Sang-Uk
    • Korean Journal of Materials Research
    • /
    • v.9 no.8
    • /
    • pp.837-842
    • /
    • 1999
  • The Ta/TaN multilayer structure with repeating layers of a poly-crystalline Ta layer of high ductility and a TaN layer of high hardness is expected to exhibit toughness. This paper reports the results on the hardness and the adhesion strength of Ta/TaN multilayers and compositional gradient Ta/TaN layers deposited on the high speed steel substrate by reactive sputtering as a function of annealing temperature. The TaN film deposited with the $N_2$/Ar ratio of 0.4 in the reactive sputtering process exhibits the highest crystallinity, and the highest hardness and the results of scratch test of the Ta/TaN multilayers. The hardness and adhesion strength of the Ta/TaN multilayers becomes deteriorated with increasing the annealing temperature in the heat treatment right after depositing the layers. Therefore, post-annealing treatments are not desirable in the case of the Ta/TaN multilayers from the standpoint of mechanical properties. Also the hardness of Ta/TaN multilayers increases with decreasing the compositional modulation wavelength, but the adhesion property of the layers is nearly independent of the wavelength. On the other hand, the compositional gradient Ta/TaN film exhibits the highest hardness and the value of scratch test for the post-annealing temperatures of 20$0^{\circ}C$ and 40$0^{\circ}C$, respectively. This tendency of the compositional gradient Ta/TaN films differs from that of the Ta/TaN multilayers.

  • PDF

미세금형 가공을 위한 전기화학식각공정의 유한요소 해석 및 실험 결과 비교

  • Ryu, Heon-Yeol;Im, Hyeon-Seung;Jo, Si-Hyeong;Hwang, Byeong-Jun;Lee, Seong-Ho;Park, Jin-Gu
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.81.2-81.2
    • /
    • 2012
  • To fabricate a metal mold for injection molding, hot-embossing and imprinting process, mechanical machining, electro discharge machining (EDM), electrochemical machining (ECM), laser process and wet etching ($FeCl_3$ process) have been widely used. However it is hard to get precise structure with these processes. Electrochemical etching has been also employed to fabricate a micro structure in metal mold. A through mask electrochemical micro machining (TMEMM) is one of the electrochemical etching processes which can obtain finely precise structure. In this process, many parameters such as current density, process time, temperature of electrolyte and distance between electrodes should be controlled. Therefore, it is difficult to predict the result because it has low reliability and reproducibility. To improve it, we investigated this process numerically and experimentally. To search the relation between processing parameters and the results, we used finite element simulation and the commercial finite element method (FEM) software ANSYS was used to analyze the electric field. In this study, it was supposed that the anodic dissolution process is predicted depending on the current density which is one of major parameters with finite element method. In experiment, we used stainless steel (SS304) substrate with various sized square and circular array patterns as an anode and copper (Cu) plate as a cathode. A mixture of $H_2SO_4$, $H_3PO_4$ and DIW was used as an electrolyte. After electrochemical etching process, we compared the results of experiment and simulation. As a result, we got the current distribution in the electrolyte and line profile of current density of the patterns from simulation. And etching profile and surface morphologies were characterized by 3D-profiler(${\mu}$-surf, Nanofocus, Germany) and FE-SEM(S-4800, Hitachi, Japan) measurement. From comparison of these data, it was confirmed that current distribution and line profile of the patterns from simulation are similar to surface morphology and etching profile of the sample from the process, respectively. Then we concluded that current density is more concentrated at the edge of pattern and the depth of etched area is proportional to current density.

  • PDF

Influence of Dissolved Gases on Crystal Structure of Electrodeposition Films Containing Calcium and Magnesium in Seawater (해수 중 칼슘 및 마그네슘을 포함한 전착 코팅막의 결정구조에 미치는 용해 기체의 영향)

  • Park, Jun-Mu;Seo, Beom-Deok;Lee, Seul-Gi;Kim, Gyeong-Pil;Gang, Jun;Mun, Gyeong-Man;Lee, Myeong-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.116-116
    • /
    • 2018
  • 부식은 재료와 사용 환경과의 상호작용에 의한 결과로서 일반적으로 두께의 감소와 균열의 발생 및 파손 등의 문제로 나타난다. 특히 사용환경 중에서 해수 분위기는 금속의 부식에 가장 유리한 조건이다. 따라서 해양환경 중 항만이나 조선 및 해양 산업 등에 많이 이용되는 강 구조물은 이에 대응하기 위하여 도장방식이나 음극방식을 사용하고 있다. 여기서 음극방식은 피방식체를 일정전위로 음극 분극하는 원리로써 외부전원을 인가하거나 비전위의 금속을 전기적으로 연결하여 방식하는 방법이다[1]. 한편, 해수 중에서 이와 같은 원리로 음극방식 할 경우에는 피방식체인 강재표면에 부분적으로 칼슘 또는 마그네슘 화합물 등의 생성물이 부착하는 현상을 볼 수 있게 된다. 이와 같이 수산화마그네슘($Mg(OH)_2$)및 탄산칼슘($CaCO_3$)을 주성분으로 하여 석출되는 석회질 피막(calcareous deposits)은 피방식체에 유입되는 음극방식 전류밀도를 감소시켜 주거나 물리적 장벽의 역할을 함으로써 외부의 산소와 물 등 부식환경으로부터 소지금속을 보호한다[2]. 그러나 석회질 피막은 소지금속과의 결합력, 막의 균일한 분포, 내식성 및 제작시간의 단축 등 해결해야 할 과제가 있다. 또한 여러 가지 환경 조건 등의 영향을 받아 그 피막의 형성 정도도 가늠하기 어렵기 때문에 음극방식 설계 시 그 정도에 따른 영향을 고려-반영하기가 곤란하다. 따라서 본 연구에서는 석출속도, 밀착성 및 내식특성을 향상시키기 위해 전착프로세스를 통해 해수 중 기체를 용해시켜 석회질 피막을 제작하고 막의 결정구조 제어 및 특성을 분석-평가하였다. 본 연구에 사용된 강 기판(Steel Substrate)은 일반구조용강(KS D 3503, SS400)을 사용하였으며, 외부전원은 정류기(Rectifier, xantrex, XDL 35-5T)를 사용하여 3 및 $5A/m^2$의 조건으로 인가하였다. 양극의 경우에는 해수에 녹아있는 이온 이외에 다른 성분들이 환원되는 것을 방지하기 위해 불용성 양극인 탄소봉(Carbon Rod)을 사용하였다. 이때 석출속도, 밀착성 및 내식특성 향상을 위해 해수에 주입한 기체의 양은 0.5 NL/min였으며, 기판 근처에 고정하여 음극 부근에서의 반응을 유도하였다. 각 조건별로 제작된 막의 표면 모폴로지, 조성원소 및 결정구조 분석을 실시하였으며, 석회질 피막의 밀착성과 내식특성을 평가하기 위해 규격에 따른 테이핑 테스트(Taping Test, ISO 2409)와 3 % NaCl 용액에서 전기화학적 양극 분극 시험을 진행하여 제작된 막의 내구성과 내식성을 분석-평가하였다. 시간에 따른 전착막의 외관관찰 결과 전류밀도의 증가와 함께 상대적으로 많은 피막이 형성되었고, 용해시킨 기체에 의해 더 치밀하고 두터운 피막이 형성됨을 확인할 수 있었다. 성분 및 결정구조 분석 결과 $Mg(OH)_2$ 성분의 Brucite 및 $CaCO_3$ 성분의 Calcite 및 Aragonite 구조를 확인하였으며, 용해시킨 기체의 영향으로 $CaCO_3$ 성분의 Aragonite 구조가 상대적으로 많이 검출되었다. 밀착성 및 내식성 평가를 실시한 결과 해수 중 용해시킨 기체에 의해 제작한 시편의 경우 견고하고 화학적 친화력이 높은 Aragonite 결정이 표면을 치밀하게 덮어 전해질로부터 산소와 물의 침입을 차단하는 역할을 하여 기체를 용해시키지 않은 3 및 $5A/m^2$ 보다 비교적 우수한 밀착성 및 내식 특성을 보이는 것으로 사료된다.

  • PDF

Slant Shear Test for Determining the Interfacial Shear Strength of Concrete Strengthened with Ultra-High Performance Fiber Reinforced Concrete (초고성능 섬유보강 콘크리트로 보강된 콘크리트의 계면 전단강도 결정을 위한 경사전단 실험)

  • Lim, Woo-Young;Hong, Sung-Gul
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.6
    • /
    • pp.637-646
    • /
    • 2016
  • In this study, slant shear tests for the prism specimens strengthened with ultra-high performance fiber reinforced concrete (UHPFRC), normal- and high-strength concrete were performed to evaluate the interfacial shear strength between old and new concrete substrate. Test parameters are the roughness of surface, concrete strength, and fiber volume fraction of UHPFRC. The surface of the concrete was roughened by shot blasting. Test results showed that the adhesion bond resistance of the specimen with a roughened surface was very large compared to that of the specimen with a smooth surface. In addition, the interfacial shear strength appeared to be affected by the concrete strength rather than the fiber volume fraction. For the roughened surface by shot-blasting method, interfacial shear resistance exceeded the upper limit which is presented in current design codes even if the shear-friction reinforcements are not provided. Based on the test results, it is applicable to use the current concrete design codes to achieve the shear-friction design for the interface between conventional concrete and UHPFRC. However, for the surface which is not processed, it would be appropriate to provide additional shear-friction reinforcement.

Strengthen Effect of RC Beam Overlaid or Repaired by VES-LMC (초속경 라텍스개질콘크리트로 덧씌우기 및 보수된 철근콘크리트보의 보강효과)

  • Choi, Sung-Yong;Yun, Kyong-Ku;Choi, Seung-Sic
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.4
    • /
    • pp.423-430
    • /
    • 2008
  • VES-LMC (very-early strength latex-modified concrete) has been widely used as repair material for bridge deck overlay or rehabilitation, because the overlaid or repaired could be opened to the traffic after 3 hours of curing. Although the field performance of VES-LMC generally indicates that it has an excellent bonding to the substrate and shows a long term performance, little quantitative data or research results have been presented in the literature on structural studies. The purpose of this study was to investigate the flexural behavior, interfacial performance, crack propagation, and strengthen effect of RC beam overlaid or repaired by VES-LMC through the 4-point flexural loading test. Two different types of RC beam were fabricated for repair and rehabilitation types. The test result showed that the strengthen effect, in term of flexural stiffness, increases as the depth of repair or overlay increases. More than 40% of stiffness was improved when the depth of repair was up to steel position. However, there was a little difference between 80 mm and 120 mm repaired beam. This means the repair depth must be considered. The interfacial behavior data showed that the repaired or overlaid beams had a little relative displacement. This means that two materials behave comparatively acting together. However, there were two specimens which had large displacement at the interface, because of poor bond strength. This suggested that interface treatment is one of the most important jobs in composite beams.

Facile Chemical Growth of Cu(OH)2 Thin Film Electrodes for High Performance Supercapacitors (간단한 화학적 합성을 통한 고성능 슈퍼캐패시터용 수산화 구리 전극)

  • Patil, U.M.;Nam, Min Sik;Shinde, N.M.;Jun, Seong Chan
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.175-180
    • /
    • 2015
  • A facile soft chemical synthesis route is used to grow nano-buds of copper hydroxide [$Cu(OH)_2$] thin films on stainless steel substrate[SS]. Besides different chemical methods for synthesis of $Cu(OH)_2$ nanostructure, the chemical bath deposition (CBD) is attractive for its simplicity and environment friendly condition. The structural, morphological, and electro-chemical properties of $Cu(OH)_2$ thin films are studied by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) measurement techniques. The results showed that, facile chemical synthesis route allows to form the polycrystalline, granular nano-buds of $Cu(OH)_2$ thin films. The electrochemical properties of $Cu(OH)_2$ thin films are studied in an aqueous 1 M KOH electrolyte using cyclic voltammetry. The sample exhibited supercapacitive behavior with $340Fg^{-1}$ specific capacitance. Moreover, electrochemical capacitive measurements of $Cu(OH)_2/SS$ electrode exhibit a high specific energy and power density about ${\sim}83Wh\;kg^{-1}$ and ${\sim}3.1kW\;kg^{-1}$, respectively, at $1mA\;cm^{-2}$ current density. The superior electrochemical properties of copper hydroxide ($Cu(OH)_2/SS$) electrode with nano-buds like structure mutually improves pseudocapacitive performance. This work evokes scalable chemical synthesis with the enhanced supercapacitive performance of $Cu(OH)_2/SS$ electrode in energy storage devices.