• Title/Summary/Keyword: Steel stud

Search Result 240, Processing Time 0.028 seconds

Experimental Study on the Tensile Behaviors of Stud Connection with Hanger (행거로 보강된 스터드 접합부의 인장거동에 관한 실험적 연구)

  • Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.4
    • /
    • pp.231-238
    • /
    • 2004
  • This paper presents the tensile behavior of the stud connection between reinforced concrete(RC) and steel members. Hanger reinforcements are placed around the studs to transfer the tensile and flexural loads to the opposite side of the concrete member. Eight specimens for the tensile tests are tested with variables, which are the arrangement details of hanger reinforcements, the reinforcing bars, and the embedment length of stud. The results of the tensile tests show that hanger reinforcements are effective to increase tensile strength for stud connections. Hangers and reinforcing bars near stud bolts contributed to the reduction of brittle failure. From the evaluation on the tensile strength by previous design guidelines, it was shown that CCD (Concrete Capacity Design) method was more suitable for estimation of test strength.

Static behaviour of multi-row stud shear connectors in high- strength concrete

  • Su, Qingtian;Yang, Guotao;Bradford, Mark A.
    • Steel and Composite Structures
    • /
    • v.17 no.6
    • /
    • pp.967-980
    • /
    • 2014
  • In regions of high shear forces in composite bridges, headed stud shear connectors need to be arranged with a small spacing in order to satisfy the design requirement of resisting the high interface shear force present at this location. Despite this, studies related to groups of headed studs are somewhat rare. This paper presents an investigation of the static behaviour of grouped stud shear connectors in high-strength concrete. Descriptions are given of five push-out test specimens with different arrangements of the studs that were fabricated and tested, and the failure modes, load-slip response, ultimate load capacities and related slip values that were obtained are reported. It is found that the load-slip equation given by some researchers based on a single stud shear connector in normal strength concrete do not apply to grouped stud shear connectors in high-strength concrete, and an algebraic load-slip expression is proposed based on the test results. Comparisons between the test results and the formulae provided by some national codes show that the equations for the ultimate capacity provided in these codes are conservative when used for connectors in high-strength concrete. A reduction coefficient is proposed to take into account the effect of the studs being in a group.

Structural Behavior of Newly Developed Cold-Formed Steel Sections(II) - Flexural Behavior (신형상 냉간성형 단면의 구조적 거동(II) - 휨거동)

  • Song, In Seop;Kim, Gap Deuk;Kwon, Young Bong
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.2
    • /
    • pp.357-364
    • /
    • 2002
  • The study performed a series of flexural tests on Closed Cold-Formed Steel Sections for stud, joist, and roof truss. Results were compared with analytical values. Each 2.4-m long and 0.9-m wide specimen consisted of two steel beams set at 0.46 m interval. The steel beams were attached to the specimens using either plaster board or ply wood. Another specimens did not use any attachment material. Positive and negative bending tests were conducted to investigate the composite behavior, including the effects of plaster board or ply wood on the buckling behavior of steel beam. Full-scale roof truss tests were also performed to study the buckling behavior and failure mode of the truss members.

Static Behavior of Stud Shear Connector for UHPC Deck (초고성능 콘크리트 바닥판을 위한 스터드 전단연결재의 정적 거동)

  • Lee, Kyoung-Chan;Kwark, Jong-Won;Park, Sang-Hyeok;Kim, Jee-Sang
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.5
    • /
    • pp.573-579
    • /
    • 2014
  • Typical composite girder has been composed with conventional concrete deck and steel girder. Recently, ultrahigh-performance-concrete (UHPC) deck is proposed in order to enhance durability and reduce weight of deck as well as to increase stiffness and strength of the composite girder. This study investigates that a headed stud is still compatible as a shear connector for the UHPC deck and steel girder composite beam. Twelve push-out specimens are prepared to evaluate the static strength of stud shear connectors embedded in the UHPC deck. The test program proves that the static strength of the stud shear connectors embedded in UHPC well meets with design codes described in AASHTO LRFD. Chosen experimental variables are aspect ratio of height to diameter of stud, thickness of deck and thickness of concrete cover over the head of stud. From the test program, aspect ratio and cover thickness are investigated to mitigate the regulations of the existing design codes. The minimum aspect ratio and the minimum cover thickness given in AASHTO LRFD are four and 50mm, respectively. This limitation hinders to lower the thickness of the UHPC deck. The results of the experiment program give that the aspect ratio and the cover thickness can be lower down to three and 25mm, respectively. Eurocode-4 regulates characteristic relative slip at least 6mm. However, test results show that stud shear connectors embedded in UHPC provide the characteristic relative slip only about 4mm. Therefore, another measures to increase ductility of stud should be prepared.

Numerical analysis of large stud shear connector embedded in HFRC

  • He, Yu Liang;Zhang, Chong;Wang, Li Chao;Yang, Ying;Xiang, Yi Qiang
    • Structural Engineering and Mechanics
    • /
    • v.80 no.5
    • /
    • pp.595-608
    • /
    • 2021
  • To investigate the mechanical behavior of large stud shear connector embedded in hybrid fiber-reinforced concrete (HFRC), a refined 3D nonlinear finite element (FE) model incorporating the constitutive model of HFRC was developed using ANSYS. Firstly, the test results conducted by the authors (He et al. 2017) were used to validate FE model of push out tests. Secondly, a total of 27 specimens were analyzed with various parameters including fiber volume fractions of HFRC, diameter of studs and HFRC strength. Finally, an empirical equation considering the contribution of steel fiber (SF) and polypropylene fiber (PF) was recommended to estimate the ultimate capacity of large stud shear connector embedded in HFRC.

Evaluation of Static Strength of Mixed Stud Shear Connection in Double Composite Bridges (이중합성 교량의 복합스터드 전단연결부의 정적강도 평가)

  • Kim, Hyun Ho;Shim, Chang Su;Yun, Kwang Jung;Lee, Pil Goo
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.5 s.78
    • /
    • pp.549-559
    • /
    • 2005
  • A railway bridge with a double composite section is proposed to enhance the structural performance of existing two-girder bridges because the governing design parameter of railway bridges is the flexural stiffness. The concrete deck in negative moment regions is neglected in the design of continuous composite bridges assuming the concrete slab has no resistance to tension. Therefore, the flexural stiffness of the composite section in the negative moment region is reduced resulting in the increase of the depth of the steel section. In order to resolve this disadvantage, several methods are suggested and the double composite section is one of the excellent solutions for extending the span length and increasing the flexural stiffness. In this study, push-out tests on lying studs and mixed stud shear connection with lying and vertical studs were performed to investigate the behavior of the shear connection in the double composite section. Static strength of the shear connection was evaluated through the test results and numerical analyses.

Shear behavior of a demountable bolted connector in steel-UHPC lightweight composite structures

  • Gu, Jin-Ben;Wang, Jun-Yan
    • Structural Engineering and Mechanics
    • /
    • v.81 no.5
    • /
    • pp.551-563
    • /
    • 2022
  • Bolted connector could be an alternative to replace the conventional welded headed stud in steel-ultra high performance concrete (UHPC) lightweight composite structures. In this paper, a novel demountable bolted shear connector, consisting of a high-strength bolt (HSB) and a specially-designed nut which is pre-embedded in a thin UHPC slab, is proposed, which may result in the quick installation and disassembly, due to the mountable, demountable and reusable features. In order to study the shear behavior of the new type of bolted shear connector, static push-out tests were conducted on five groups of the novel demountable bolted shear connector specimens and one group of conventional welded headed stud specimen for comparison. The effect of the bolt shank diameter and aspect ratio of bolt on failure mode, shear stiffness, peak slip at the steel-UHPC interface, shear strength and ductility of novel bolted connectors is investigated. Additionally, design formula for the shear strength is proposed to check the suitability for assessment of the novel demountable bolted shear connectors.

A Study on the Composite Behavior of Steel-Concrete with Slip Anchor (슬립앵커를 이용한 강-콘크리트 합성 거동 연구)

  • Won, Deok-Hee;Han, Taek-Hee;Kim, Seung-Jun;Han, Seung-Ryong;Kang, Young-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.2
    • /
    • pp.7-12
    • /
    • 2011
  • Presently, composite method for steel and concrete is often used the stud. Steel properties of composite column could be changed by increasing of welding. The changed properties is possibly to cause local-buckling. Composite column had a large effect by slip instead of pull-out force in comparison composite girder. Improvement of adhesive force had effect by contact area rather than height of stud in composite column. This paper proposed new type of stud and analyzed performance through experimental study. This method would be effect steel structure with curvature.

Shear capacity of stud shear connectors with initial damage: Experiment, FEM model and theoretical formulation

  • Qi, Jianan;Wang, Jingquan;Li, Ming;Chen, Leilei
    • Steel and Composite Structures
    • /
    • v.25 no.1
    • /
    • pp.79-92
    • /
    • 2017
  • Initial damage to a stud due to corrosion, fatigue, unexpected overloading, a weld defect or other factors could degrade the shear capacity of the stud. Based on typical push-out tests, a FEM model and theoretical formulations were proposed in this study. Six specimens with the same geometric dimensions were tested to investigate the effect of the damage degree and location on the static behavior and shear capacity of stud shear connectors. The test results indicated that a reduction of up to 36.6% and 62.9% of the section area of the shank could result in a dropping rate of 7.9% and 57.2%, respectively, compared to the standard specimen shear capacity. Numerical analysis was performed to simulate the push-out test and validated against test results. A parametrical study was performed to further investigate the damage degree and location on the shear capacity of studs based on the proposed numerical model. It was demonstrated that the shear capacity was not sensitive to the damage degree when the damage section was located at 0.5d, where d is the shank diameter, from the stud root, even if the stud had a significant reduction in area. Finally, a theoretical formula with a reduction factor K was proposed to consider the reduction of the shear capacity due to the presence of initial damage. Calculating K was accomplished in two ways: a linear relationship and a square relationship with the damage degree corresponding to the shear capacity dominated by the section area and the nominal diameter of the damaged stud. This coefficient was applied using Eurocode 4, AASHTO LRFD (2014) and GB50017-2003 (2003) and compared with the test results found in the literature. It was found that the proposed method produced good predictions of the shear capacity of stud shear connectors with initial damage.

Mechanical behavior of stud shear connectors embedded in HFRC

  • He, Yu-Liang;Wu, Xu-Dong;Xiang, Yi-Qiang;Wang, Yu-Hang;Liu, Li-Si;He, Zhi-Hai
    • Steel and Composite Structures
    • /
    • v.24 no.2
    • /
    • pp.177-189
    • /
    • 2017
  • Hybrid-fiber reinforced concrete (HFRC) may provide much higher tensile and flexural strengths, tensile ductility, and flexural toughness than normal concrete (NC). HFRC slab has outstanding advantages for use as a composite bridge potential deck slab owing to higher tensile strength, ductility and crack resistance. However, there is little information on shear connector associated with HFRC slabs. To investigate the mechanical behavior of the stud shear connectors embedded in HFRC slab, 14 push-out tests (five batches) in HFRC and NC were conducted. It was found that the stud shear connector embedded in HFRC had a better ductility, higher stiffness and a slightly larger shear bearing capacity than those in NC. The experimentally obtained ultimate resistances of the stud shear connectors were also compared against the equations provided by GB50017 2003, ACI 318-112011, AISC 2011, AASHTO LRFD 2010, PCI 2004, and EN 1994-1-1 (2004), and an empirical equation to predict the ultimate shear connector resistance considering the effect of the HFRC slabs was proposed and validated by the experimental data. Curve fitting was performed to find fitting parameters for all tested specimens and idealized load-slip models were obtained for the specimens with HFRC slabs.