• Title/Summary/Keyword: Steel scrap

Search Result 64, Processing Time 0.026 seconds

Electrochemical Corrosion Characteristics of the Iron-based Damping Alloy (철기제진합금의 전기화학적 부식특성)

  • Shim, Hyun Yee;Jee, Choong Soo;Lee, Jin Hyung;Lee, Kyu Hwan;Shin, Myung Chul
    • Analytical Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.85-90
    • /
    • 1995
  • Corrosion characteristics of 4 kinds of the Fe-Al damping alloys has been studied in the 3.5% NaCl solution and compared with a cold rolled mild steel and pure Ti, No passivation, besides Ti, was observed in the Fe-Al damping alloys and a cold rolled mild steel. Corrosion rate was decreased with lower carbon concentration. In the case of Mn addition for improving damping capacity, corrosion rate was decreased in scrap iron but was not decreased in electrolytic iron. It has been shown that corrosion rate of Fe-Al damping alloys lays between that of the pure Ti and that of a cold rolled mild steel.

  • PDF

Study on the Vibrational Scraping of Uranium Product from a Solid Cathode of Electrorefiner (진동 탈리에 의한 전해정련 고체음극에서의 우라늄 생성물 회수 연구)

  • Park, Sungbin;Kang, Young-Ho;Hwang, Sung Chan;Lee, Hansoo;Paek, Seungwoo;Ahn, Do-Hee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.4
    • /
    • pp.315-319
    • /
    • 2015
  • A high-throughput electrorefiner has been developed for commercialization use by enhancing the uranium recovery from the reduced metal which is produced from the oxide reduction process. It is necessary to scrap and effectively collect uranium dendrites from the surface of the solid cathode for high yield. When a steel electrode is used as the cathode in the electrorefining process, uranium is deposited and regularly stuck to the steel cathode during electrorefining. The sticking coefficient of a steel cathode is very high. In order to decrease the sticking coefficient of the steel cathode effectively, vibration mode was applied to the electrode in this study. Uranium dendrites were scraped and fell apart from the steel cathode by a vibration force. The vibrational scraping of the steel cathode was compared to the self-scraping of the graphite cathode. Effects of the applied current density and the vibration stroke on the scraping of the uranium dendrites were also investigated.

Influence of Charging Condition of Al-dross on Maximum Concentration of Al in Molten Steel : Fundamental study for improvement of chemical energy in EAF process (용강 중 Al 최대 농도에 대한 Al 드로스 장입 조건의 영향: 전기로 공정 내 화학 에너지 향상을 위한 기반 연구)

  • Kim, Gyu-Wan;Kim, Sun-Joong
    • Resources Recycling
    • /
    • v.28 no.4
    • /
    • pp.44-50
    • /
    • 2019
  • In the electric arc furnace process, the chemical energy such as the heat of oxidation reaction and the heat of carbon combustion etc. is consumed as 30% of the total input energy. In order to reduce $CO_2$ emission in EAF, it is necessary to decrease the use of electric power energy during scrap melting stage and increase the use of chemical energy. In general, when the carbon materials is individually charged into the molten steel, the carbon materials floated to the slag layer due to low density before it is dissolved in molten steel. When the concentration of carbon in the molten steel is high, the combustion energy of carbon by oxygen injection can lower the electric power energy and improve the chemical energy consumption. Therefore, an efficient charging methods of carbon material is required to increase the efficiency of carbon combustion heat. On the other hand, Al-dross, which is known as a by-product after Al smelting, includes over 25 mass% of metallic Al, and the oxidation heats of Al is lager than that of carbon. However, the recycling ratio fo Al-dross was very low and is almost landfilled. In order to effectively utilize the heats of oxidation of Al in Al-dross, it is necessary to study the application of Al-dross in the steel process. In this study, the dissolution efficiency of carbon and aluminum in molten steel was investigated by varying the reaction temperature and the mixing ratios of coke and Al-dross.

A Study on the Purification of Zn from Pb Splashing Alloy (Pb Splashing 합금으로부터 Zn정련에 관한 연구)

  • 박재욱;김용하;이대열;신형기;김진한;박성수;정원섭
    • Resources Recycling
    • /
    • v.6 no.4
    • /
    • pp.3-10
    • /
    • 1997
  • Electric are furnace dust (EAF dust) generated in steel production based on scrap melting is contained Zn and Fe about 25 and 30 percent by weight, respectively. From a metallurgical point of view, the dust could be regarded as a raw material for Zn and Fe source. To recover the Zn in the metal from EAF dust, many system are proposed such as Arc Plasma Furmace and Pb splasher method. In this study, to recover high purity Zn from Pb splasing alloy, Zn distillation is carried out at the temperature of 1123, 1173, 1223, 1273 K, the gas flow rate of 2.5, 5.0, 8.0 Ni/min and the distilling time of 10, 30, 60, 90 minutes. The main results obtained from this study are as follows:(1) The amount of evaporated Zn and its evaporating rate increased with increasing temperature, but purity of Zn decreased with increasing temperature. Optimum temperature range was found out to be between 1173∼1223K. (2) The amount of evaporated Zn and evaporation rate increased with increasing gas flow rate at a given temperature and distillation time. Gas flow rate has more influence over the amount of evaporated Zn and evaporation rate with increasing temperature.

  • PDF

A Study on Level of Economical Contribution due to Ship Type in Incheon Port (인천항 입.출항 선박형태에 따른 기여도 분석에 관한 연구)

  • Nam, Heung-Woo;Nam, Young-Woo;Jho, Yong-Chul;Lee, Chang-Ho
    • Journal of the Korea Safety Management & Science
    • /
    • v.13 no.2
    • /
    • pp.203-210
    • /
    • 2011
  • Incheon Port has been served as not only the center of the Yellow Sea and port for trade with China but also domestic gateway port for the metropolitan area, playing a professional role as the greatest domestic Port which processes a variety of items such as imported raw materials, bulk cargo, oil and gas and so on. This study was conducted based on step by step business process between port entry and departure of ship, and incurred cost according to port industry classification and performance on the port facility. Bulk cargo and general cargo such as grain, food, steel, scrap metal, wood, coal, LNG, LPG and oil etc., which have a vast majority of import goods, have been treated by 57,062 thousand tons and 7,409 thousand tons of container cargo were processed at Incheon Port in 2009. Bulk vessels and carriers moving items such as LPG, LNG and oil recorded 38,836 thousand won and full-container vessels recorded 11,001 thousand won as the amount of notified port facility usage fees in 2008.

The Activation Plan of Resource Circulation of Copper through Analysis of Waste Resources Circulation Flow (동의 폐자원흐름분석을 통한 자원순환 활성화 방안)

  • Lee, Hi Sun;Woo, Jeong-Hun;Lee, Jae-Chun
    • Resources Recycling
    • /
    • v.23 no.2
    • /
    • pp.26-36
    • /
    • 2014
  • The materials flow of copper can be analyzed into up-stream and down-stream stages based on the literature survey. Discharge and recycling stages in the down-stream have been particularly analyzed through the field survey. The waste nickel resources circulation flow may conveniently be grouped into 4 stages discharge import, collection disuse, resource recovery and product production export, the resources mainly consist of copper scrap and stainless steel scrap in 2010. The resource circulation rate of 36.83% is obtained from the above flow. Various plans are therefore, suggested in each stage to increase resource circulation rate. At discharge import stage, it is suggested to consider this kind of waste as an important resources if it is appropriately classified in detail, basides applying quota tariff to this kind of waste. At collection disuse stage, the plan of stabilizing supply and demand is suggested through the improvement of bidding system. Resources professional cycling stage crushing and grinding companies foster coexistence between large and small plans and strategies were suggested. At product production export stage, the integrated approval is suggested approval for licensing to register units as waste-treating facilities instead of exempting registration under the present condition to activate recycling industries.

Process Technology of the Direct Separation and Recovery of Iron and Zinc Metals Contained in High Temperature EAF Exhaust Gas

  • Furukawa, Takeshi;Sasamoto, Hirohiko;Isozaki, Shinichi;Tanno, Fumio
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.393-397
    • /
    • 2001
  • The innovatory process, that is the direct separation and recovery of the iron and zinc metals contained in the high temperature exhaust gas generated from the electric arc furnace fer the inn scrap melting and/or the dust treatment, has been proposed. This proposed process consists of the moving coke bed filter that is directly connected to the electric furnace, and the following heavy metal condenser. The exhaust gas passes through the filter and the condenser right after exhausting from the electric furnace. The moving coke bed filter is being controlled at about 1000℃ and collects iron and slag components contained in the high temperature exhaust gas. Heavy metals such as zinc and lead pass through the filter as vapor. Based on the thermodynamic considerations, the iron oxide and the zinc oxide are reduced in the filter. The solution loss reaction rate is comparatively low at about 1000℃ in the coke bed filter by the analysis using the mathematical simulation model. The heavy metal condenser is installed in the position after the coke bed filter, and rapidly cools the gas from about 1000℃ to 450℃ by a full of the cooling medium like the solid ceramic ball in addition to the cooling from the wall. The zinc and lead vapor condense and separate f개m the gas in a liquid state. The investigation of the characteristics of the exhaust gas of the commercial electric arc furnace, the fundamental experiments of the laboratory scale and the bench scale ensured the formation of this proposed process. A small-scale pilot plant examination is carrying out at present to confirm the formation of the process. It is certain that the dust generation of the electric arc furnace is extremely decreased, and it can save the energy consumption of usual dust treatment processes by the realization of this process.

  • PDF

Synthesis and Characteristics of Blue Ceramic Pigments Using Electric Arc Furnace Dust (제강분진을 활용한 고온발색 청색무기안료 합성 및 특성에 관한 연구)

  • Son, Bo-Ram;Kim, Jin-Ho;Han, Kyu-Sung;Cho, Woo-Suk;Hwang, Kwang-Taek
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.3
    • /
    • pp.184-189
    • /
    • 2014
  • Electric arc furnace dust (EAFD) is a solid waste generated by the steel-scrap recycling process. It mainly consists of zinc oxides (ZnO), alumina ($Al_2O_3$), iron oxides ($Fe_2O_3$), and silica ($SiO_2$). Here we report the preparation and characterization of blue ceramic pigments using EAFD powder as a starting material. $(Zn(EAFD),Co)Al_2O_4$ blue ceramic pigment was prepared by the solid-state reaction method. The color characteristics of the pigment obtained were compared with those of pure $CoAl_2O_4$. The new pigment was characterized using XRD, CIE-$L^*a^*b^*$ color-measurements, SEM, and EDX. The XRD analysis revealed that the $(Zn(EAFD),Co)Al_2O_4$ pigment was composed of mainly the spinel phase of $(Zn,Co)Al_2O_4$. The $Zn(EAFD)_{0.25}Co_{0.75}Al_2O_4$ pigments showed a vivid blue color with a $b^*$ value of -28.64 and a good glaze stability with a transparent glaze.

Flexural Behavior of Reinforced Concrete Columns Using Electric Arc Furnace Oxidizing Slag Aggregates (전기로 산화슬래그 골재를 사용한 철근콘크리트 기둥의 휨 거동)

  • Jung, You-Jin;Lee, Young-Hyun;Kim, Sang-Woo;Kim, Kil-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.267-273
    • /
    • 2012
  • This study is performed to evaluate the flexural performance of reinforced concrete columns with electric arc furnace oxidizing slag aggregates. Electric arc furnace slag is a by-product obtained from the process of refining scrap steel. The electric arc furnace slag can be used as a concrete aggregate, because it mainly consists of CaO and $SiO_2$, similar to natural rocks and minerals. Three rectangular columns with various types of aggregate were cast to test in flexure. All of the test specimens had a cross-section of $250{\times}250$mm and a height of 1,500 mm in test region. The specimens were designed to apply reversed cyclic antisymmetric moment and constant axial force. The experimental results showed that the specimens with electronic arc furnace oxidizing slag aggregates had superior flexural performance than the specimen with natural aggregates.

Use of waste steel fibers from CNC scraps in shear-deficient reinforced concrete beams

  • Ilker Kalkan;Yasin Onuralp Ozkilic;Ceyhun Aksoylu;Md Azree Othuman Mydin;Carlos Humberto Martins;Ibrahim Y. Hakeem;Ercan Isik;Musa Hakan Arslan
    • Steel and Composite Structures
    • /
    • v.49 no.2
    • /
    • pp.245-255
    • /
    • 2023
  • The present paper summarizes the results of an experimental program on the influence of using waste lathe scraps in the concrete mixture on the shear behavior of RC beams with different amounts of shear reinforcement. Three different volumetric ratios (1, 2 and %3) for the scraps and three different stirrup spacings (160, 200 and 270 mm) were adopted in the tests. The shear span-to-depth ratios of the beams were 2.67 and the stirrup spacing exceeded the maximum spacing limit in the building codes to unfold the contribution of lathe scraps to the shear resistances of shear-deficient beams, subject to shear-dominated failure (shear-tension). The experiments depicted that the lathe scraps have a pronounced contribution to the shear strength and load-deflection behavior of RC beams with widely-spaced stirrups. Namely, with the addition of 1%, 2% and 3% waste lathe scraps, the load-bearing capacity escalated by 9.1%, 21.8% and 32.8%, respectively, compared to the reference beam. On the other hand, the contribution of the lathe scraps to the load capacity decreases with decreasing stirrup spacing, since the closely-spaced stirrups bear the shear stresses and render the contribution of the scraps to shear resistance insignificant. The load capacity, deformation ductility index (DDI) and modulus of toughness (MOT) values of the beams were shown to increase with the volumetric fraction of scraps if the stirrups are spaced at about two times the beam depth. For the specimens with a stirrup spacing of about the beam depth, the scraps were found to have no considerable contribution to the load capacity and the deformation capacity beyond the ultimate load. In other words, for lathe scrap contents of 1-3%, the DDI values increased by 5-23% and the MOT values by 63.5-165% with respect to the reference beam with a stirrup spacing of 270 mm. The influence of the lathe scraps to the DDI and MOT values were rather limited and even sometimes negative for the stirrup spacing values of 160 and 200 mm.