• Title/Summary/Keyword: Steel plate detection

Search Result 50, Processing Time 0.027 seconds

A Camber Monitoring System of RM Zone based on Direction Selective Edge Detection Algorithm (방향 선택형 에지검출 알고리즘 기반의 RM존 캠버 모니터링 시스템)

  • Kim, Hyun-Soo;Choi, Yong Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.8
    • /
    • pp.713-717
    • /
    • 2015
  • In this paper, we propose camber monitoring system which is using on hot rolling process. In roughing mill which is one of the rolling part in hot rolling process, steel plate can be bended in width direction under the imbalance of rolling condition. This bending of steel plate in width direction is called as camber. In order to measure the camber, first, cameras which are installed over transport pathway of steel plate take pictures of whole shape of steel plate. And location value of steel plate edge is extrated from these pictures by edge detection algorithm. But, there are a lot of noises which are generated by such as water sprays, dusts, peripheral equipments in these pictures, and these noises make edge detection difficult. In order to solve this kind of problem, we developed a direction selective edge detection algorithm, and applicated in our camber monitoring system. As a result, we got stable results in spite of process noises.

An Effective Steel Plate Detection Using Eigenvalue Analysis (고유값 분석을 이용한 효과적인 후판 인식)

  • Park, Sang-Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.5
    • /
    • pp.1033-1039
    • /
    • 2012
  • In this paper, a simple and robust algorithm is proposed for detecting each steel plate from a image which contains several steel plates. Steel plate is characterized by line edge, so line detection is a fundamental task for analyzing and understanding of steel plate images. To detect the line edge, the proposed algorithm uses the small eigenvalue analysis. The proposed approach scans an input edge image from the top left corner to the bottom right corner with a moving mask. A covariance matrix of a set of edge pixels over a connected region within the mask is determined and then the statistical and geometrical properties of the small eigenvalue of the matrix are explored for the purpose of straight line detection. Using the detected line edges, each plate is determined based on the directional information and the distance information of the line edges. The results of the experiments emphasize that the proposed algorithm detects each steel plate from a image effectively.

Development of a Steel Plate Surface Defect Detection System Based on Small Data Deep Learning (소량 데이터 딥러닝 기반 강판 표면 결함 검출 시스템 개발)

  • Gaybulayev, Abdulaziz;Lee, Na-Hyeon;Lee, Ki-Hwan;Kim, Tae-Hyong
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.3
    • /
    • pp.129-138
    • /
    • 2022
  • Collecting and labeling sufficient training data, which is essential to deep learning-based visual inspection, is difficult for manufacturers to perform because it is very expensive. This paper presents a steel plate surface defect detection system with industrial-grade detection performance by training a small amount of steel plate surface images consisting of labeled and non-labeled data. To overcome the problem of lack of training data, we propose two data augmentation techniques: program-based augmentation, which generates defect images in a geometric way, and generative model-based augmentation, which learns the distribution of labeled data. We also propose a 4-step semi-supervised learning using pseudo labels and consistency training with fixed-size augmentation in order to utilize unlabeled data for training. The proposed technique obtained about 99% defect detection performance for four defect types by using 100 real images including labeled and unlabeled data.

Transmission of ultrasonic guided wave for damage detection in welded steel plate structures

  • Liu, Xinpei;Uy, Brian;Mukherjee, Abhijit
    • Steel and Composite Structures
    • /
    • v.33 no.3
    • /
    • pp.445-461
    • /
    • 2019
  • The ultrasonic guided wave-based technique has become one of the most promising methods in non-destructive evaluation and structural health monitoring, because of its advantages of large area inspection, evaluating inaccessible areas on the structure and high sensitivity to small damage. To further advance the development of damage detection technologies using ultrasonic guided waves for the inspection of welded components in structures, the transmission characteristics of the ultrasonic guided waves propagating through welded joints with various types of defects or damage in steel plates are studied and presented in this paper. A three-dimensional (3D) finite element (FE) model considering the different material properties of the mild steel, high strength steel and austenitic stainless steel plates and their corresponding welded joints as well as the interaction condition of the steel plate and welded joint, is developed. The FE model is validated against analytical solutions and experimental results reported in the literature and is demonstrated to be capable of providing a reliable prediction on the features of ultrasonic guided wave propagating through steel plates with welded joints and interacting with defects. Mode conversion and scattering analysis of guided waves transmitted through the different types of weld defects in steel plates are performed by using the validated FE model. Parametric studies are undertaken to elucidate the effects of several basic parameters for various types of weld defects on the transmission performance of guided waves. The findings of this research can provide a better understanding of the transmission behaviour of ultrasonic guided waves propagating through welded joints with defects. The method could be used for improving the performance of guided wave damage detection methods.

Bayesian model update for damage detection of a steel plate girder bridge

  • Xin Zhou;Feng-Liang Zhang;Yoshinao Goi;Chul-Woo Kim
    • Smart Structures and Systems
    • /
    • v.31 no.1
    • /
    • pp.29-43
    • /
    • 2023
  • This study investigates the possibility of damage detection of a real bridge by means of a modal parameter-based finite element (FE) model update. Field moving vehicle experiments were conducted on an actual steel plate girder bridge. In the damage experiment, cracks were applied to the bridge to simulate damage states. A fast Bayesian FFT method was employed to identify and quantify uncertainties of the modal parameters then these modal parameters were used in the Bayesian model update. Material properties and boundary conditions are taken as uncertainties and updated in the model update process. Observations showed that although some differences existed in the results obtained from different model classes, the discrepancy between modal parameters of the FE model and those experimentally obtained was reduced after the model update process, and the updated parameters in the numerical model were indeed affected by the damage. The importance of boundary conditions in the model updating process is also observed. The capability of the MCMC model update method for application to the actual bridge structure is assessed, and the limitation of FE model update in damage detection of bridges using only modal parameters is observed.

Fused Illumination Mechanism Design for Steel Plate Surface Inspection (철강 후판의 표면 검사를 위한 융합조명계 설계)

  • Cho, Eun Doek;Kim, Gyung Bum
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.3
    • /
    • pp.14-19
    • /
    • 2017
  • In this paper, a fused illumination mechanism for detecting surface defects in steel plates was designed by applying the discriminant function that can differentiate the contrast of defects and non-defects. There is low contrast, non-uniformity, and no feature characteristics in steel plate surfaces. The fused illumination mechanism is devised, based on those characteristics. Optimum parameters of the fused illumination mechanism are determined by applying the discriminant function after acquiring the defect image in steel plate surfaces. The performance of the proposed mechanism is verified by experminets.

  • PDF

Analysis of Magnetic Flux Leakage based Local Damage Detection Sensitivity According to Thickness of Steel Plate (누설자속 기반 강판 두께별 국부 손상 진단 감도 분석)

  • Kim, Ju-Won;Yu, Byoungjoon;Park, Sehwan;Park, Seunghee
    • Journal of Korean Society of Disaster and Security
    • /
    • v.11 no.2
    • /
    • pp.53-60
    • /
    • 2018
  • To diagnosis the local damages of the steel plates, magnetic flux leakage (MFL) method that is known as a adaptable non-destructive evaluation (NDE) method for continuum ferromagnetic members was applied in this study. To analysis the sensitivity according to thickness of steel plate in MFL method based damage diagnosis, several steel plate specimens that have different thickness were prepared and three depths of artificial damage were formed to the each specimens. To measured the MFL signals, a MFL sensor head that have a constant magnetization intensity were fabricated using a hall sensor and a magnetization yoke using permanent magnets. The magnetic flux signals obtained by using MFL sensor head were improved through a series of signal processing methods. The capability of local damage detection was verified from the measured MFL signals from each damage points. And, the peak to peak values (P-P value) extracted from the detected MFL signals from each thickness specimen were compared each other to analysis the MFL based local damage detection sensitivity according to the thickness of steel plate.

Modal Characteristics of Steel Plate-Girder Under Various Temperatures (강판형의 진동모드특성에 미치는 온도의 영향)

  • 김정태;윤재웅;백종훈
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.6
    • /
    • pp.58-64
    • /
    • 2003
  • The performance of vibration-based damage detection methods is dependent upon the accuracy of modal parameters measured from structures of interest. Vibration monitoring, performed on a structure under uncertain temperature conditions, results in the uncertainty in model parameters of the structure. In this study, an experiment on the effect of various temperatures on modal characteristics of steel plate-girders is presented. First, the model plate-girder used for the experiment is described. Second, natural frequencies measured from the structure, using two different excitation sources, are described. Third, natural frequencies measured from the structure, under various temperatures, are described. Finally, the relationship between measurement temperature and natural frequency is analyzed.

Interface monitoring of steel-concrete-steel sandwich structures using piezoelectric transducers

  • Yan, Jiachuan;Zhou, Wensong;Zhang, Xin;Lin, Youzhu
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.1132-1141
    • /
    • 2019
  • Steel-concrete-steel (SCS) sandwich structures have important advantages over conventional concrete structures, however, bond-slip between the steel plate and concrete may lead to a loss of composite action, resulting in a reduction of stiffness and fatigue life of SCS sandwich structures. Due to the inaccessibility and invisibility of the interface, the interfacial performance monitoring and debonding detection using traditional measurement methods, such as relative displacement between the steel plate and core concrete, have proved challenging. In this work, two methods using piezoelectric transducers are proposed to detect the bond-slip between steel plate and core concrete during the test of the beam. The first one is acoustic emission (AE) method, which can detect the dynamic process of bond-slip. AE signals can be detected when initial micro cracks form and indicate the damage severity, types and locations. The second is electromechanical impedance (EMI) method, which can be used to evaluate the damage due to bond-slip through comparing with the reference data in static state, even if the bond-slip is invisible and suspends. In this work, the experiment is implemented to demonstrate the bond-slip monitoring using above methods. Experimental results and further analysis show the validity and unique advantage of the proposed methods.

Corrosion Image Monitoring of steel plate by using k-means clustering (k-means 클러스터링을 이용한 강판의 부식 이미지 모니터링)

  • Kim, Beomsoo;Kwon, Jaesung;Choi, Sungwoong;Noh, Jungpil;Lee, Kyunghwang;Yang, Jeonghyeon
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.5
    • /
    • pp.278-284
    • /
    • 2021
  • Corrosion of steel plate is common phenomenon which results in the gradual destruction caused by a wide variety of environments. Corrosion monitoring is the tracking of the degradation progress for a long period of time. Corrosion on steel plate appears as a discoloration and any irregularities on the surface. In this study, we developed a quantitative evaluation method of the rust formed on steel plate by using k-means clustering from the corroded area in a given image. The k-means clustering for automated corrosion detection was based on the GrabCut segmentation and Gaussian mixture model(GMM). Image color of the corroded surface at cut-edge area was analyzed quantitatively based on HSV(Hue, Saturation, Value) color space.