• Title/Summary/Keyword: Steel pipe strut

Search Result 7, Processing Time 0.025 seconds

Evaluation of Cost-Effectiveness on High-Strength Steel Pipe Strut and Its Application (고강도 강관버팀보 현장적용 및 경제성 평가)

  • La, Seung-Min;Lee, Jong-Gu;Lee, Yong-Joo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.511-520
    • /
    • 2008
  • The steel pipe strut for a means of the retaining structure has been used generally in North America, Europe and China so far. However, Korea and Japan, two countries are much familiar with H-shape steel strut having its anisotropic strength on two different axes(named as strong and weak axes), even though they recognize the steel pipe's excellence of structural function associated with its compressive ability. This trend is mainly due to a number of its field application, accumulated know-hows and workmanship etc. This paper introduces particular features of a high-strength steel pipe strut in comparison with the H-shape steel strut and its application for two excavation sites in Seoul. As a result of field verification, the high-strength pipe steel strut is more effective than the H-shape steel strut in terms of construction costs, schedules, constructibility and structural stability.

  • PDF

High Strength Steel Pipe Strut Field Applicability Evaluation through case studies of Domestic Constuction Projects (국내 적용사례 분석을 통한 고강도 강관버팀보의 현장 적용성 평가)

  • La, Seung-Min
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.457-464
    • /
    • 2010
  • Ever since the introduction of high strength steel pipe strut(POSTRUT) in 2008, there has been over 50 applications domestically. The merits of construction period reduction and cost savings have been well reported abroad in countries such as America, Europe and China but ever in domestic projects or ground condidtions. 25 actual construction projects were investigated and statistically analyzed to evaluate the quantitative effects of POSTRUT. Also the construction projects along with the cautions that should be taken and the structural behavior differences between POSTRUT and H-section struts are briefly described in this paper.

  • PDF

Behavior of deep excavation system supported by steel pipe struts (강관버팀보 적용 흙막이 시스템 거동 특성)

  • Yoo, Chung-Sik;Na, Seung-Min;Lee, Jong-Goo;Kang, Dong-Wook
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.811-818
    • /
    • 2010
  • This paper presents the results of a numerical investigation on behavior of deep excavation wall system supported by steel pipe struts. A series of three-dimensional finite element analyses were carried out on a deep excavation project site which adopted steel pipe struts. The results indicated that the mechanical behavior of steel pipe supported deep excavation is comparable to that of a conventional H-pile supported deep excavation, although the steel pipe supported system is required less number of struts than the conventional H-pile strut system. Also shown is that the sectional stresses of the steel pipe support system are within the allowable values implying that the steel pipe support system can be effectively used as an alternative to conventional H-pile support system.

  • PDF

Design and Buckling Analysis of Earth Retaining Struts Supported by High Strength Steel Pipe and PHC Pile (고강도 강관과 PHC파일이 활용된 흙막이 버팀보의 좌굴해석 및 설계)

  • Lim, Seung Hyun;Kim, In Gyu;Kim, Sung Bo
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.4
    • /
    • pp.411-422
    • /
    • 2015
  • The design and buckling behavior of earth retaining system supported by high strength steel pipe and PHC pile under compression is presented in this study. Buckling analysis of various strut system was investigated according to the strut total length(30m, 60m, 90m), three types of built-up columns and connection condition. Buckling loads calculated by F.E analysis was compared with the theoretical solution corresponding to diagonal buckling mode, local and global buckling mode of main strut. The design of the built-up column struts are performed based on design guide for high strength steel pipes and P-M diagram for built-up column with two PHC pile section.

Structural Stability of Temporary Facility System using High-Strength Steel Pipes Based on Abnormal Behavior Parameters (이상거동 변수 기반 고강도 강관 가시설 시스템의 구조 안정성)

  • Lee, Jin-Woo;Noh, Myung-Hyun;Lee, Sang-Youl
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.1-12
    • /
    • 2019
  • This study defined abnormal behaviors such as bending deformations or buckling behaviors occurred in high strength steel pipe strut system, and carried out a full-scale bending test for different connection types. A parametric study was carried out to gain an insight about structural performances considering abnormal behavior effects in high strength steel pipe strut system. Five abnormal behaviors were considered as undesirable deflections of strut structures, which are basic load combination, excessive excavation situations, impact loading effects, additional overburden loads, load combinations, and strut lengths. Subsequent simulation results present various influences of parameters on structural performances of the strut system. Based on the results, we propose methods to prevent unusual behaviors of pipe-type strut structures made of high strength steels.

Numerical Investigation on the Behavior of Braced Excavation Supported by Steel Pipe Struts (강관버팀보 흙막이 시스템의 거동 특성에 관한 수치해석적 연구)

  • Yoo, Chung-Sik;Na, Seung-Min;Lee, Jong-Goo;Jang, Dong-Wook
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.6
    • /
    • pp.45-56
    • /
    • 2010
  • This paper presents the results of a numerical investigation on the behavior of deep excavation wall system supported by steel pipe struts. A series of three-dimensional finite element analyses were carried out on a braced excavation case which adopted steel pipe struts. The results indicated that the mechanical behavior of the steel pipe supported braced excavation is comparable to that of a conventional H-pile supported excavation, although the steel pipe supported system allows a larger longitudinal spacing than the conventional H-pile strut system. Also shown is that the sectional stresses of the steel pipe support system are within the allowable values. This implies that the steel pipe support system can be effectively used as an alternative to conventional H-pile support system.

Case Study of Braced Wall System with High-strength Steel Pipe Strut (고강도 강관파이프 스트러트 흙막이공법 사례연구)

  • Shin, Jae-Min;Park, Hyun-Young;Joo, Jin-Kyu;Shin, Yoonseok;Kim, Gwang-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.19-20
    • /
    • 2012
  • According to develop urban area, the depth and floor area of basement tend to become deeper and larger. Excavation work for basement floor work is very important because its cost take 20% of total construction cost. Therefore, many studies of developing retaining wall system have performed for feasibility and safety in deep excavation work. In this study, new supporting system used high-strength pipe for retaining wall is introduced to reduce the construction cost and improve the safety and constructability by analyzing case study.

  • PDF