• Title/Summary/Keyword: Steel member

Search Result 923, Processing Time 0.026 seconds

Analysis and design for stability in the U.S. - An overview

  • Lui, Eric M.;Ge, Ma
    • Steel and Composite Structures
    • /
    • v.5 no.2_3
    • /
    • pp.103-126
    • /
    • 2005
  • This paper describes the theoretical background and underlying principles behind the American Institute of Steel Construction Load and Resistance Factor Design (AISC LRFD) Specification for the analysis and stability design of steel frames. Various analysis procedures that can take into consideration the effects of member instability, frame instability, member-frame interaction, geometric imperfections, and inelasticity are reviewed. Design approaches by which these factors can be incorporated in the design of steel moment frames are addressed. Current specification guidelines for member and frame design in the U.S. are summarized. Examples are given to illustrate the validity of the design equations. Some future directions for the analysis and stability design of steel frames are discussed.

The Study on Compressive Behavior of Connection Member between Steel Pipe Pile and Concrete Footing (강관말뚝 기초 두부 연결부의 압축거동에 관한 연구)

  • Youn, IL-Ro;Hong, Ki-Nam
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.9 no.3
    • /
    • pp.183-190
    • /
    • 2006
  • Generally, application of steel pile as deep foundation member needs specials requirement for the connection method between steel pipe and concrete footing. To investigate real compressive behavior of connection member between steel pipe pile and concrete footing, three specimens were tested with carefully designed experimental system. Main test variable is the connection method between steel pipe pile and concrete footing. The bolted bonding method and hook bonding method was considered as the connection method in this study. From the test results gained from experiment, it was conformed that two types of connection method have the almost same compressive resistance capacity. Therefore, we can conclude that these two connection methods can be used as the strengthening method to verify the compressive composite action of concrete and steel pipe pile.

  • PDF

The effects of construction related costs on the optimization of steel frames

  • Choi, Byoung-Han;Gupta, Abhinav;Baugh, John W. Jr.
    • Structural Engineering and Mechanics
    • /
    • v.43 no.1
    • /
    • pp.31-51
    • /
    • 2012
  • This paper presents a computational study that explores the design of rigid steel frames by considering construction related costs. More specifically, two different aspects are investigated in this study focusing on the effects of (a) reducing the number of labor intensive rigid connections within a frame of given geometric layout, and (b) reducing the number of different member section types used in the frame. A genetic algorithm based optimization framework searches design space for these objectives. Unlike some studies that express connection cost as a factor of the entire frame weight, here connections and their associated cost factors are explicitly represented at the member level to evaluate the cost of connections associated with each beam. In addition, because variety in member section types can drive up construction related costs, its effects are evaluated implicitly by generating curves that show the trade off between cost and different numbers of section types used within the frame. Our results show that designs in which all connections are considered to be rigid can be excessively conservative: rigid connections can often be eliminated without any appreciable increase in frame weight, resulting in a reduction in overall cost. Eliminating additional rigid connections leads to further reductions in cost, even as frame weight increases, up to a certain point. These complex relationships between overall cost, rigid connections, and member section types are presented for a representative five-story steel frame.

A Study on Deformation Capacity of High Strength Steel Beam-to-Column Connections According to Welding Detail at Beam End (보 단부 용접상세에 따른 고강도강 기둥-보 접합부의 변형능력에 관한 연구)

  • Oh, Sang Hoon;Park, Hae Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.4
    • /
    • pp.335-348
    • /
    • 2014
  • For high-strength steel, it is difficult to be applied to flexible structural member because it have high yield ratio and low basic material's toughness. One of the great problems when using high-strength steel connections is the brittle fracture at the end of the beam member in common with general mild steel connections. In the cases of mild steel connections, it has be developed that special moment frame connection details by reinforcing structural member or improvement of welding access hole. But, it is incomplete at yet about applicability estimation of high-strength steel connections. This study is the initial step research for the applicability estimation of beam-to-column connections being applied to developed high-strength steel, HSA800. And, it studied about structural performance of the high-strength steel connections according to the details of welding access hole through full-scale test and analytical method.

A Study on the Determination of Required Fire Protection Thickness Considering Steel Section Shape (강재단면형상을 고려한 소요 내화피복 두께 산정에 관한 연구)

  • Kim, Hae-Soo;Kang, Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.12
    • /
    • pp.5910-5916
    • /
    • 2011
  • Surface area of the steel member exposed to fire differs according to type and size of the section and the kind of the member, which shows a big difference in the temperature rise of the steel by fire. The section factor ($H_p$/A) is determined by factors such as type, size, and member of the steel and type of the fire protection material, and it is the criteria in determining thickness of the fire protection material. This study showed that the size of the steel increase regardless of the steel type, the section factor decrease. In the results on fire protection thickness of the steel according to the section factor, the efficiency of 1 hour fire protection was lower from 30 to 50% than the criteria. And there is the member, which have the thickness lower the minimum 27% in 2 hour fire protection, but it generally approached in the criteria. In case of H-shape steel, the efficiency of 3 hour fire protection was suitable for the criteria, but rectangular hollow steel section and circular hollow steel section were higher (5.0-17.5%) than the criteria.

A Study on the Production Mechanisms of Residual Stress in Welded T-joint of Steel Pipe Member (T형 강관 용접 이음부의 잔류응력 생성기구에 관한 연구)

  • 장경호;장갑철;경장현;이은택
    • Journal of Welding and Joining
    • /
    • v.21 no.6
    • /
    • pp.40-45
    • /
    • 2003
  • Steel members have advantages of resisting torsion and axial compression. In design, residual stresses at the welded joint of T-shape steel pipes are one of the most important points to be considered. In this paper, characteristics of residual stresses of welded joints are clarified by carrying out 3D non-steady heat conduction analysis and 3D thermal elastic-plastic FE-analysis. According to the results, the production mechanism of residual stresses at the welded joint of T-shape steel pipe is clarified. In this paper, circumferential stresses depended on thermal histories but axial and radial stresses were more dependent on geometrical shape than thermal histories. Residual stresses in the axial direction on the lower part of pipe member were tensile, controlled by geometrical shape. However, in case of middle part, residual stresses in all the directions were controlled by thermal histories.

Seismic design of irregular space steel frames using advanced methods of analysis

  • Vasilopoulos, A.A.;Bazeos, N.;Beskos, D.E.
    • Steel and Composite Structures
    • /
    • v.8 no.1
    • /
    • pp.53-83
    • /
    • 2008
  • A rational and efficient seismic design methodology for irregular space steel frames using advanced methods of analysis in the framework of Eurocodes 8 and 3 is presented. This design methodology employs an advanced static or dynamic finite element method of analysis that takes into account geometrical and material non-linearities and member and frame imperfections. The inelastic static analysis (pushover) is employed with multimodal load along the height of the building combining the first few modes. The inelastic dynamic method in the time domain is employed with accelerograms taken from real earthquakes scaled so as to be compatible with the elastic design spectrum of Eurocode 8. The design procedure starts with assumed member sections, continues with the checking of the damage and ultimate limit states requirements, the serviceability requirements and ends with the adjustment of member sizes. Thus it can sufficiently capture the limit states of displacements, rotations, strength, stability and damage of the structure and its individual members so that separate member capacity checks through the interaction equations of Eurocode 3 or the usage of the conservative and crude q-factor suggested in Eurocode 8 are not required. Two numerical examples dealing with the seismic design of irregular space steel moment resisting frames are presented to illustrate the proposed method and demonstrate its advantages. The first considers a seven storey geometrically regular frame with in-plan eccentricities, while the second a six storey frame with a setback.

A Study on Blasting Aspect of Steel Member and Concrete Member According to Separation distance of Explosives (폭약 이격에 따른 강판과 콘크리트 부재의 파괴양상 연구)

  • Yang, Hyung-Sik;Kim, Jung-Gyu;Ko, Young-Hun;Noh, You-Song;Shin, Myeong-Jin
    • Explosives and Blasting
    • /
    • v.32 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • TNT was blasted on the surface of steel plates and concrete block to study the effect of separation distance between object and charge. The equation of US Army Corps of Engineers turned out to be rather conservative. Effect of separation distance is larger for steel plate than concrete block. Steel plate cannot be cut by standard or more charge in the case of 2 cm separation while the concrete block can be crushed with the same distance.

Relative Corrosion Environment Conditions of Steel Box Members Examined by Corrosion Current Measurement (부식전류 평가를 통한 강박스 부재의 상대적 부식환경 평가)

  • Jin, Yong-Hee;Ha, Min-Gyun;Jeong, Young-Soo;Ahn, Jin-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.171-179
    • /
    • 2020
  • In this study, a local corrosion environment monitoring was conducted using steel box specimen fabricated to be the same as actual steel bridge members. The steel box specimen that obtained the same corrosion environment as a steel bridge was classified into the upper plate, bottom plate and web plate. Atmospheric corrosion monitoring sensors(ACM sensors) were installed in each corrosion monitoring member of a steel box specimen to measure the corrosion current and examine time of wetness for each monitoring member. The time of wetness and accumulated corrosion current of each monitoring member were calculated from the measured corrosion current using ACM sensors. The corrosion environment that appeared for each of the steel box members was evaluated from monitoring corrosion environment data as the corrosion current, time of wetness, mean corrosion depth of each monitoring member. Additionally, the atmospheric corrosion environment monitoring was also conducted to compare with the local corrosion environment of steel box members. From these local corrosion environment monitoring for the steel box specimen, the relationship between the relative corrosion environment and mean corrosion depth of each steel box member was examined.

Tensile Behavior of Reinforced Concrete Member due to Restrained Shrinkage (구속된 건조수축이 철근콘트리트 인장거동에 미치는 영향)

  • 안태송;김진철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.315-320
    • /
    • 1998
  • The experimental set-up and one-dimensional analytical model have been developed to investigate the tensile behavior of reinforced concrete member due to restrained drying shrinkage. The experimental results have been compared with the analytical prediction of the maximum residual stress of steel and concrete due to restrained shrinkage. The tensile residual stress concrete by one-dimensional bilinear model shows 0.19 and 0.63 of tensile strength for 0.83% and 3.29 of steel ratio. The residual tensile stress of concrete increases as the steel ratio increases. The effect of steel fiber has not influenced the residual stress due to restrained shrinkage of concrete.

  • PDF