• Title/Summary/Keyword: Steel for Construction

Search Result 3,425, Processing Time 0.03 seconds

Application of computer methods for the effects of nanoparticles on the frequency of the concrete beams experimentally and numerically

  • Chencheng Song;Junfeng Shi;Ibrahim Albaijan;H. Elhosiny Ali;Amir Behshad
    • Steel and Composite Structures
    • /
    • v.48 no.1
    • /
    • pp.19-25
    • /
    • 2023
  • Due to high application of concrete structures in construction industry, however, the quality improvement is essential. One of the new ways for this purpose is adding the nanoparticles to the concrete. In this work, vibration analysis of concrete beams reinforced by graphene oxide (GO) nanoparticles based on mathematical model has been investigated. For the accuracy of the presented model, the experimental study is done for comparing the compressive strength. Since the nanoparticles can not be solved in water without any specific process, at the first, GO nanoparticles should be dispersed in water by using shaker, magnetic striker, ultrasonic devices and finally mechanical mixer. For modelling of the strucuture, sinusoidal shear deformation beam theory (SSDBT) is utilized. Mori-Tanak model model is utilized for obtaining the effective properties of the beam including agglomeration influences. Utilizing the energy method and Hamilton's principal, the motion equations are calculated. The frequency of the concrete beam is obtanied by analytical method. Three samples with 0.02% GO nanoparticles are built and its compressive strength is compared which shows a good accuracy with maximum 1.29% difference with mathematical model and other papers. The aim of this work from the theoretical study is investigating the effects of nanoparticles volume percentage and agglomeration, length and thickness of the beam on the frequency of the structure. The results show that the with enhancing the GO nanoparticles, the frequency is increased. For example, with enhancing the volume percent of GO nanoparticles from zero to 0.08%, the compressive strength is increased 48.91%. and 46.83%, respectively for two cases of with and without agglomeration.

Evaluation on Feasibility of Industrial By-products for Development of Mono-Layer Landfill Cover System (산업부산물을 이용한 단층형 매립지 복토시스템 개발을 위한 적용 타당성 평가)

  • Kim, Soon-Oh;Kim, Pil-Joo;Yu, Chan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.11
    • /
    • pp.1075-1086
    • /
    • 2008
  • In order to investigate the applicability and suitability of the industrial by-products to apply mono-layer cover system for non-sanitary landfill sites, 6 different industrial by-products, such as construction waste, bottom ash, gypsum, blast furnace and steel manufacture slags, and stone powder sludge, were evaluated. Various physicochemical and hydrodynamic properties of the industrial byproducts were investigated. The environmental safety was monitored using batch and long-term leaching tests as well. In addition, the flexibility of plants was observed by cultivating them in the industrial by-products. The results for physicochemical properties indicate that most of the materials considered appeared to be suitable for landfill cover. Particularly, the concentration levels of hazardous elements regulated by the Korean Law for Waste Management did not exceed the regulatory limits in all target materials. In addition, the concentrations of regulated elements for the Korean Soil Conservation Law were examined below the regulatory limits in most of materials considered, except for the stone powder sludge. The results of batch and long-term experiments showed bottom ash and construction waste were the most suitable materials for landfill cover among the industrial by-products considered. The results of plant studies indicate that the bottom ash among industrial by-products considered was most effective in developing vegetation on landfill site, showing fast germination and large growth index. At the final covering system made of mixture of soil and bottom ash, the optimum application rate of farmyard manure was observed to be 40-50 Mg/ha.

Numerical technique for chloride ingress with cover concrete property and time effect

  • Lee, Bang Yeon;Ismail, Mohamed A.;Kim, Hyeok-Jung;Yoo, Sung-Won;Kwon, Seung-Jun
    • Computers and Concrete
    • /
    • v.20 no.2
    • /
    • pp.185-196
    • /
    • 2017
  • Durability problems initiated from steel corrosion are unseen but critical issues, so that many researches are focused on chloride penetration evaluation. Even if RC (Reinforced Concrete) structures are exposed to normal environment, chloride ingress varies with concrete surface conditions and exposed period. This paper presents an analysis technique for chloride behavior evaluation considering time effect on diffusion and surface conditions assumed as double-layered system. For evaluation of deteriorated surface condition, field investigation was performed for concrete pavement exposed to deicing agent for 18 years. In order to consider enhanced surface concrete, chloride profiles in surface-impregnated concretes exposed to chloride attack for 2 years from previous research were investigated. Through reverse analysis, effectively deteriorated/enhanced depth of surface and the related reduced/enlarged diffusion coefficient in the depth are simulated. The proposed analysis technique was evaluated to handle the chloride behavior more accurately considering changes of chloride ingress within surface layer and decreased diffusion coefficient with time. For the concrete surface exposed to deicing agent, the deteriorated depth and enlarged diffusion coefficient are evaluated to be 12.5~15.0 mm and 200% increasing diffusion coefficient, respectively. The results in concrete containing enhanced cover show 10.0~12.5 mm of impregnated depth and 85% reduction of chloride diffusion in tidal and submerged conditions.

A Study of Location Correction Algorithm for Pedestrian Location Tracking in Traffic Connective Transferring System (교통 연계 환승 시스템의 보행자 위치 추적을 위한 보정 알고리즘 연구)

  • Jung, Jong-In;Lee, Sang-Sun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.2
    • /
    • pp.149-157
    • /
    • 2009
  • Tracking technologies which provide real-time and customized information through various information collecting and processing for pedestrians who use traffic connective and transferring center have been being examined. However some problems are caused due to the wide-range positioning error for some services as device installation and service place. It is also difficult to be applied to traffic linkage and transfer services because many situations can be barren. In the testbed, Gwangmyoung Station, we got some results in bad conditions such as a lot of steel construction and another communication device. Practically, conditions of the place which will be built can be worse than Gwangmyoung station. Therefore, we researched suitable Location correction algorithm as a method for accuracy to traffic connective and transferring system. And its algorithm is designed through grid coordinates, map-matching, modeling coordinates and Kalman filtering and is being implemented continuously. Also preparing for optimization of various transferring center model, we designed for simulator type algorithm what is available for deciding algorithm factor.

  • PDF

Shear Performance of PUR Adhesive in Cross Laminating of Red Pine

  • Kim, Hyung-Kun;Oh, Jung-Kwon;Jeong, Gi-Young;Yeo, Hwan-Myeong;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.2
    • /
    • pp.158-163
    • /
    • 2013
  • Cross laminated timber (CLT) has been an rising issue as a promising building material replacing steel-concrete in mid story rise construction. But, there was no specific standard for CLT because it had been developed in industrial section. Recently, new draft for requirements of CLT was proposed by EN which suggested to evaluate the performance of adhesive in CLT by the same method as glulam. But, it has been reported that shear performance of cross laminated timber is governed by rolling shear. Therefore, block shear tests were carried out to compare parallel to grain laminating and cross laminating using commercial one component PUR (Poly urethane resin). The result showed that the current glulam standard for evaluating bonding performance is not appropriate for CLT. Beacause shear strength of cross laminating decreased to 1/3 of parallel to grain laminating and this strength was representing shear performance of wood itself not the bond. However, cross laminating showed no significant effect on wood failure. Thus, wood failure can be used as a requirement of CLT bonding. Based on the results, cross laminating effect should be included when evaluating adhesive performance of CLT correctly and should be considered as an important factor.

Improved analytical method for adhesive stresses in plated beam: Effect of shear deformation

  • Guenaneche, B.;Benyoucef, S.;Tounsi, A.;Adda Bedia, E.A.
    • Advances in concrete construction
    • /
    • v.7 no.3
    • /
    • pp.151-166
    • /
    • 2019
  • This paper introduces a new efficient analytical method, based on shear deformations obtained with 2D elasticity theory approach, to perform an explicit closed-form solution for calculation the interfacial shear and normal stresses in plated RC beam. The materials of plate, necessary for the reinforcement of the beam, are in general made with fiber reinforced polymers (Carbon or Glass) or steel. The experimental tests showed that at the ends of the plate, high shear and normal stresses are developed, consequently a debonding phenomenon at this position produce a sudden failure of the soffit plate. The interfacial stresses play a significant role in understanding this premature debonding failure of such repaired structures. In order to efficiently model the calculation of the interfacial stresses we have integrated the effect of shear deformations using the equilibrium equations of the elasticity. The approach of this method includes stress-strain and strain-displacement relationships for the adhesive and adherends. The use of the stresses continuity conditions at interfaces between the adhesive and adherents, results pair of second-order and fourth-order coupled ordinary differential equations. The analytical solution for this coupled differential equations give new explicit closed-form solution including shear deformations effects. This new solution is indented for applications of all plated beam. Finally, numerical results obtained with this method are in agreement of the existing solutions and the experimental results.

Design of High Performance Reinforced Concrete Pile for Improvement of Seismic Performance (내진성능 향상을 위한 고성능 철근콘크리트 말뚝 설계에 관한 연구)

  • Park, Chan Sik;Cho, Jeong-Rae;Kim, Young Jin;Chin, Won Jong;Yoon, Hyejin;Choi, Myung Kyu
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.183-190
    • /
    • 2019
  • Recent changes in the construction method of piles to minimize noise, along with the development of high-strength reinforcement, have provided an economical high performance RC pile development to compensate for the disadvantages of existing PHC piles. In this study, a methodology for the development of cross - section details of high performance RC piles of various performances is presented by freely applying high strength steel and concrete. This study suggested a technique for calculating bending moments for a given axial force corresponding to the allowable crack widths and this can be used for serviceablity check. In calculating the design shear force, the existing design equation applicable to the rectangular or the I section was modified to be applicable to the hollow circular section. In particular, in the limit state design method, the shear force is calculated in proportion to the axial force, and the procedure for calculating PV diagram is established. Last, the section details are determined through PM diagrams that they have the similar flexural and axial-flexural performances of the PHC pile A, B and C types with a diameter of 500 mm. To facilitate the application of the selected standard sections to the practical tasks, the design PM diagram and design shear forces are proposed in accordance with the strength design method and limit state design method.

Analysis of Lateral Retrofitting Effect by FRP and BRB for Beam-column Element Joint of Low-Rise Piloti Buildings (FRP시트와 비좌굴가새를 적용한 저층 필로티 구조물의 보-기둥 연결부 거동 해석에 관한 연구)

  • Kim, Min-Sook;Yoon, So-Hee;Lee, Young-Hak;Kim, Hee-Cheul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.69-77
    • /
    • 2009
  • The experiment was carried out to investigate lateral retrofitting effects by FRP and BRB (Buckling-Restrained Brace) for beam-column elements. These results were utilized to establish an analytical model using commercial nonlinear analysis software, PERFORM3D. Concrete and steel analytical models previously proposed by several scholars were adopted for this analytical study. A proposed analysis model showed reasonable accuracy compared with the test results on the beam-column elements strengthened FRP sheets and BRB, as well as with the non-strengthened element subjected to lateral cyclic loadings. Subsequently, the proposed modeling technique for nonlinear analysis would be helpful for preliminary analyses for retrofitting structures, by enabling engineers to estimate the improved capacity of retrofitted structural elements before performing construction.

Displacement and Stress Monitoring for Excavation Deep Foundation (인접지역의 깊은 터파기 굴착에서 변위 및 응력의 계측)

  • 원연호
    • Explosives and Blasting
    • /
    • v.17 no.1
    • /
    • pp.27-55
    • /
    • 1999
  • The excavation works for deep foundation in urban areas have recently increased complaints of blasting vibration and settlement of ground level. Foundation must be excavated approximately up to 24-28m depths from the surface. The roads and subway line pass through the excavation area. The Dae-chung station is also located at the nearest distance 5-35m from the working site. To protect subway station and adjacient some structures from blasting and settlement, the level of ground vibration, displacements and stress were monitored and analyzed. The results can be summarized as follows ; 1. An empirical particle velocity equation were obtained by test blasts at Nassan Missi 860 Office tel construction site. $V{\;}={\;}K(D/\sqrt{W})^{-n}$, where the values for n and k are estimated tobe 0.371 and 1.551. From this ground vibration equation, the max. charge weight per delay time against distance from blasting point is calculated. Detailed blasting method is also presented. 2. To measure the horizontal displacement in directions perpendicular to the borehole axis, 6 inclinometers installed around working sites. The displacement at the begining was comparatively high because the installation of struts was delayed, but after its installation the values showed a stable trend. Among them, the displacement by 3 inclinometers installed on a temporary parking area showed comparatively high values, for example, the displacement measured at hole No. IC-l recoded the max. 47.04mm for 6 months and at hole No. IC-2 recorded the max. 57.33mm for 7 months. So, all of these data was estimated below a safe standard value 103mm. 3. Seven strain gauge meter was installed of measure the magnitude and change of stress acted on structs. The measured value of maximum stress was $-465{\;}kgf/\textrm{cm}^2,{\;}-338.4{\;}kgf/\textrm{cm}^2,{\;}302.3{\;}kgf/\textrm{cm}^2$ respectively. In compareto the allowable stress level of steel, they are estimated to be safe.

  • PDF

A Study on the Disaster Prevention Plan to minimize the School Damage in the Earthquake Disaster (학교 지진피해 최소화를 위한 방재대책 개선에 관한 연구)

  • Lee, Byoungho;Cho, Woncheol
    • Journal of Korean Society of societal Security
    • /
    • v.3 no.1
    • /
    • pp.67-73
    • /
    • 2010
  • School is a place to be done the education of Disaster Prevention and to be established the function of Disaster Prevention and seismic performance to secure the safety of children as well as emergency evacuation facilities for local communities in case of disaster. To improve the ability of Earthquake Disaster Prevention for students and teachers schools have to put the Earthquake Disaster Prevention on the subjects, for an example ethics, social study, science and gym and make a plan to efficiently manage school disaster prevention facilities. Seismic retrofitting on school facilities have to be established with the method of construction for steel bracings and seismic shear walls choosing old architectures first which is not the design with the seismic performance considering educational environmental aspects, and reconstruction of old architectures to get the agreement of societies. Furthermore, there is great demand for the effective, efficient and systematic improvement of school facilities for the use of shelters to be disaster prevention facilities.

  • PDF